Open Access
Issue
Wuhan Univ. J. Nat. Sci.
Volume 29, Number 2, April 2024
Page(s) 106 - 116
DOI https://doi.org/10.1051/wujns/2024292106
Published online 14 May 2024
  1. Arnold V I. Mathematical Methods of Classical Mechanics [M]. New York: Springer-Verlag, 1978. [Google Scholar]
  2. El-Nabulsi R A. Nonlinear dynamics with non-standard Lagrangians [J]. Qualitative Theory of Dynamical Systems, 2013, 12(2): 273-291. [Google Scholar]
  3. Saha A, Talukdar B. Inverse variational problem for nonstandard Lagrangians [J]. Reports on Mathematical Physics, 2014, 73(3): 299-309. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  4. Saha A, Talukdar B. On the non-standard Lagrangian equations [EB/OL]. [2013-01-12]. https://arxiv.org/ftp/arxiv/papers/1301/1301.2667.pdf. [Google Scholar]
  5. Muslelak Z E. Standard and non-standard Lagrangians for dissipative dynamical systems with variable coefficients [J]. Journal of Physics A: Mathematical and Theoretical, 2008, 41(5): 055205. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  6. Zhang Y, Cai J X. Noether theorem of Herglotz type for nonconservative Hamilton systems in event space [J]. Wuhan University Journal of Natural Sciences, 2021, 26(5): 376-382. [Google Scholar]
  7. Chen J Y, Zhang Y. Lie symmetry theorem for non-shifted Birkhoffian systems on time scales [J]. Wuhan University Journal of Natural Sciences, 2022, 27(3): 211-217. [CrossRef] [EDP Sciences] [Google Scholar]
  8. Zhang Y. A study on time scale non-shifted Hamiltonian dynamics and Noether's theorems [J]. Wuhan University Journal of Natural Sciences, 2023, 28(2):106-116. [CrossRef] [EDP Sciences] [Google Scholar]
  9. Zhang Y, Zhou X S. Noether theorem and its inverse for nonlinear dynamical systems with nonstandard Lagrangians [J]. Nonlinear Dynamics, 2016, 84(4): 1867-1876. [CrossRef] [MathSciNet] [Google Scholar]
  10. Song J, Zhang Y. Noether symmetry and conserved quantity for dynamical system with non-standard Lagrangians on time scales [J]. Chinese Physics B, 2017, 26(8): 084501. [NASA ADS] [CrossRef] [Google Scholar]
  11. Song J, Zhang Y. Noether's theorems for dynamical systems of two kinds of non-standard Hamiltonians [J]. Acta Mechanica, 2018, 229(1): 285-297. [CrossRef] [MathSciNet] [Google Scholar]
  12. Zhang L J, Zhang Y. Non-standard Birkhoffian dynamics and its Noether's theorems [J]. Communications in Nonlinear Science and Numerical Simulation, 2020, 91: 105435. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  13. Zhang Y, Wang X P. Lie symmetry perturbation and adiabatic invariants for dynamical system with non-standard Lagrangians [J]. International Journal of Non-Linear Mechanics, 2018, 105: 165-172. [NASA ADS] [CrossRef] [Google Scholar]
  14. Jia Y D, Zhang Y. Fractional Birkhoffian dynamics based on quasi⁃fractional dynamics models and its Lie symmetry [J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2021, 38(1): 84-95. [Google Scholar]
  15. Zhang Y, Wang X P. Mei symmetry and invariants of quasi-fractional dynamical systems with non-standard Lagrangians [J]. Symmetry, 2019, 11 (8):1061. [CrossRef] [Google Scholar]
  16. Zhou X S, Zhang Y. Generalized energy integral and Whittaker method of reduction for dynamics systems with Non-standard Lagrangians [J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2017, 49(2): 269-275(Ch). [Google Scholar]
  17. Zhou X S, Zhang Y. Routh method of reduction for dynamic systems with non-standard Lagrangians [J]. Chinese Quarterly of Mechanics, 2016, 37(1): 5-21(Ch). [Google Scholar]
  18. Cieśliński J I, Nikiciuk T A. Direct approach to the construction of standard and non-standard Lagrangians for dissipative-like dynamical systems with variable coefficients [J]. Journal of Physics A: Mathematical and Theoretical, 2010, 43(17): 175205. [CrossRef] [MathSciNet] [Google Scholar]
  19. Bagchi B, Ghosh D, Modak S, et al. Nonstandard Lagrangians and branching: The case of some nonlinear Liénard systems [J]. Modern Physics Letters A, 2019, 34(14): 1950110. [CrossRef] [MathSciNet] [Google Scholar]
  20. Liu S X, Guan F, Wang Y. The nonlinear dynamics based on the non-standard Hamiltonians [J]. Nonlinear Dynamics, 2017, 88(2):1229-1236. [CrossRef] [MathSciNet] [Google Scholar]
  21. Chandrasekar V K, Senthilvelan M, Lakshmanan M. Unusual Liénard-type nonlinear oscillator [J]. Physics Review E, 2005, 72(6): 066203. [Google Scholar]
  22. Chandrasekar V K, Senthilvelan M, Lakshmanan M. On the Lagrangian and Hamiltonian description of the damped linear harmonic oscillator [J]. Journal of Mathematical Physics, 2007, 48(3): 032701. [CrossRef] [MathSciNet] [Google Scholar]
  23. Muslelak Z E, Roy D, Swift L D. Method to drive Lagrangian and Hamiltonian for a nonlinear dynamical system with variable coefficients [J]. Chaos, Solitons & Fractals, 2008, 38(3): 894-902. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  24. EI-Nabulsi R A. Non-standard fractional Lagrangians [J]. Nonlinear Dynamics, 2013, 74(1): 381-394. [CrossRef] [MathSciNet] [Google Scholar]
  25. EI-Nabulsi R A. Non-standard power-law Lagrangians in classical and quantum dynamics [J]. Applied Mathematics Letters, 2015, 43: 120-127. [CrossRef] [MathSciNet] [Google Scholar]
  26. EI-Nabulsi R A. Gravitational field as a pressure force from logarithmic Lagrangians and non-standard Hamiltonians: The case of stellar halo of Milky Way [J]. Communications in Theoretical Physics, 2018, 69(3): 233-240. [CrossRef] [MathSciNet] [Google Scholar]
  27. Chen B. Analytical Dynamics[M]. 2nd Ed. Beijing: Peking University Press, 2012(Ch). [Google Scholar]
  28. Mei F X, Wu H B, Li Y M. A Brief History of Analytical Mechanics [M]. Beijing: Science Press, 2019(Ch). [Google Scholar]
  29. Mei F X. Canonical transformation for weak nonholonomic systems [J]. Chinese Science Bulletin, 1993, 38(4): 281-285. [Google Scholar]
  30. Zhang Y. Theory of canonical transformation for a fractional mechanical system [J]. Acta Mathematicae Applicatae Sinica, 2016, 39(2): 249-260(Ch). [MathSciNet] [Google Scholar]
  31. Zhang Y. The generalized canonical transformations of Birkhoffian systems and their basic formulations [J]. Chinese Quarterly of Mechanics, 2019, 40(4): 656-665(Ch). [Google Scholar]
  32. Zhang Y. Theory of generalized canonical transformations for Birkhoff systems [J]. Advances in Mathematical Physics, 2020, 2020: 9482356. [Google Scholar]
  33. Zhang Y, Zhai X H. Generalized canonical transformation for second order Birkhoffian systems on time scales[J]. Theoretical and Applied Mechanics Letters, 2019, 9(6): 353-357. [CrossRef] [Google Scholar]
  34. Mei F X. Applications of Lie Groups and Lie Algebras to Constrained Mechanical Systems [M]. Beijing: Science Press, 1999 (Ch). [Google Scholar]
  35. Zhang Y, Mei F X. Algebraic structure of the dynamical equations of holonomic mechanical system in relative motion [J]. Journal of Beijing Institute of Technology, 1998, 7(1): 12-18. [Google Scholar]
  36. Mei F X, Shi R C, Zhang Y F. Poisson's theory of the Chaplygin's equations [J]. Journal of Beijing Institute of Technology, 1995, 4(2): 123-129. [Google Scholar]
  37. Zhang Y, Shang M. Poisson theory and integration method for a dynamical system of relative motion [J]. Chinese Physics B, 2011, 20(2): 024501. [NASA ADS] [CrossRef] [Google Scholar]
  38. Fu J L, Chen X W, Luo S K. Algebraic structures and Poisson integrals of relativistic dynamical equations for rotational systems [J]. Applied Mathematics and Mechanics, 1999, 10(11): 1266-1274. [Google Scholar]
  39. Mei F X. Poission's theory of Birkhoffian system [J]. Chinese Science Bulletin, 1996, 41(8): 641. [MathSciNet] [Google Scholar]
  40. Luo S K, Chen X W, Guo Y X. Algebraic structure and Poisson integrals of rotational relativistic Birkhoff system [J]. Chinese Physics, 2002, 11(6): 523-528. [NASA ADS] [CrossRef] [Google Scholar]
  41. Zhang Y. Poisson theory and integration method of Birkhoffian systems in the event space [J]. Chinese Physics B, 2010, 19(8): 080301. [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.