Open Access
Issue |
Wuhan Univ. J. Nat. Sci.
Volume 29, Number 3, June 2024
|
|
---|---|---|
Page(s) | 242 - 256 | |
DOI | https://doi.org/10.1051/wujns/2024293242 | |
Published online | 03 July 2024 |
- Escudero C, Korutcheva E. Origins of scaling relations in nonequilibrium growth[J]. Journal of Physics A: Mathematical and Theoretical, 2012, 45(12): 125005. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
-
Wang X J. The
-Hessian Equations, Lecture Notes in Mathematics[M]. Berlin: Springer-Verlag, 2009. [Google Scholar]
- Trudinger N S, Wang X J. The Monge-Ampère Equation and Its Geometric Applications, Handbook of Geometric Analysis[M]. Boston: International Press, 2008. [Google Scholar]
- Batt J, Faltenbacher W, Horst E. Stationary spherically symmetric models in stellar dynamics[J]. Archive for Rational Mechanics and Analysis, 1986, 93(2): 159-183. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
-
Deng Y B, Li Y, Yang F. A note on the positive solutions of an inhomogeneous elliptic equation on
[J]. Journal of Differential Equations, 2009, 246(2): 670-680. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
- Liu Y, Li Y, Deng Y B. Separation property of solutions for a semilinear elliptic equation[J]. Journal of Differential Equations, 2000, 163(2): 381-406. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
-
Li Y, Ni W M. On conformal scalar curvature equations in
[J]. Duke Mathematical Journal, 1988, 57(3): 895-924. [MathSciNet] [Google Scholar]
-
Ni W M. On the elliptic equation
, it's generalizations and applications in geometry [J]. Indiana University Mathematics Journal, 1982, 31(4): 493-529. [CrossRef] [MathSciNet] [Google Scholar]
- Ni W M, Yotsutani S. Semilinear elliptic equations of Matukuma-type and related topics[J]. Japan Journal of Applied Mathematics, 1988, 5(1):1-32. [CrossRef] [MathSciNet] [Google Scholar]
- Batt J, Li Y. The positive solutions of the Matukuma equation and the problem of finite radius and finite mass[J]. Archive for Rational Mechanics and Analysis, 2010, 198(2): 613-675. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
-
Li Y. Asymptotic behavior of positive solutions of equation
in
[J]. Journal of Differential Equations, 1992, 95(2): 304-330. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
- Wang B, Zhang Z C, Li Y. The radial positive solutions of the Matukuma equation in higher dimensional space: Singular solution[J]. Journal of Differential Equations, 2012, 253(12): 3232-3265. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
- Wang B, Zhang Z C. Asymptotic behavior of positive solutions of the Hénon equation[J]. Rocky Mountain Journal of Mathematics, 2018, 48(8): 2717-2749. [MathSciNet] [Google Scholar]
- Batt J, Pfaffelmoser K. On the radius continuity of the models of polytropic gas spheres which correspond to the positive solutions of the generalized Emden-Fowler equation[J]. Mathematical Methods in the Applied Sciences, 1988, 10(5): 499-516. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
- Gidas B, Spruck J. Global and local behavior of positive solutions of nonlinear elliptic equations[J]. Communications on Pure and Applied Mathematics, 1981, 34(4): 525-598. [CrossRef] [MathSciNet] [Google Scholar]
- Wang B, Zhang Z C. Asymptotic behavior of positive solutions for quasilinear elliptic equations[J]. Nonlinear Differential Equations and Applications NoDEA, 2022, 29(4): 44. [CrossRef] [Google Scholar]
- Matukuma T. Sur la dynamique des amas globulaires stellaires[J]. Proceedings of the Imperial Academy, 1930, 6(4): 133-136. [NASA ADS] [MathSciNet] [Google Scholar]
- Li Y. On the positive solutions of the Matukuma equation[J]. Duke Mathematical Journal, 1993, 70(3): 575-589. [MathSciNet] [Google Scholar]
- Yanagida E. Structure of positive radial solutions of Matukuma's equation[J]. Japan Journal of Industrial and Applied Mathematics, 1991, 8(1): 165-173. [CrossRef] [MathSciNet] [Google Scholar]
- Alarcón S, Quaas A. Large number of fast decay ground states to Matukuma-type equations[J]. Journal of Differential Equations, 2010, 248(4): 866-892. [CrossRef] [MathSciNet] [Google Scholar]
- Felmer P, Quaas A, Tang M X. On the complex structure of positive solutions to Matukuma-type equations[J]. Annales de l'Institut Henri Poincaré C, Analyse non Linéaire, 2009, 26(3): 869-887. [CrossRef] [MathSciNet] [Google Scholar]
- Morishita H, Yanagida E, Yotsutani S. Structure of positive radial solutions including singular solutions to Matukuma's equation[J]. Communications on Pure & Applied Analysis, 2005, 4(4): 871-888. [CrossRef] [MathSciNet] [Google Scholar]
-
Sánchez J, Vergara V. Bounded solutions of a
-Hessian equation involving a weighted nonlinear source[J]. Journal of Differential Equations, 2017, 263(1): 687-708. [CrossRef] [MathSciNet] [Google Scholar]
-
Miyamoto Y, Sánchez J, Vergara V. Multiplicity of bounded solutions to the
-Hessian equation with a Matukuma-type source[J]. Revista Matemática Iberoamericana, 2019, 35(5): 1559-1582. [CrossRef] [MathSciNet] [Google Scholar]
-
Brandolini B. On the symmetry of solutions to a
-Hessian type equation[J]. Advanced Nonlinear Studies, 2013, 13(2): 487-493. [CrossRef] [MathSciNet] [Google Scholar]
- Gavitone N. Isoperimetric estimates for eigenfunctions of Hessian operators[J]. Ricerche di Matematica, 2009, 58(2): 163-183. [CrossRef] [MathSciNet] [Google Scholar]
- Gavitone N. Weighted eigenvalue problems for Hessian equations[J]. Nonlinear Analysis: Theory, Methods & Applications, 2010, 73(11): 3651-3661. [CrossRef] [MathSciNet] [Google Scholar]
-
Nakamori S, Takimoto K. A Bernstein type theorem for parabolic
-Hessian equations[J]. Nonlinear Analysis: Theory, Methods & Applications, 2015, 117: 211-220. [CrossRef] [Google Scholar]
- Pietra F D, Gavitone N. Upper bounds for the eigenvalues of Hessian equations[J]. Annali di Matematica Pura ed Applicata, 2014, 193(3): 923-938. [CrossRef] [MathSciNet] [Google Scholar]
-
Wei W. Uniqueness theorems for negative radial solutions of
-Hessian equations in a ball[J]. Journal of Differential Equations, 2016, 261(6): 3756-3771. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
- Zhang Z J. Boundary behavior of large solutions to the Monge-Ampère equations with weights[J]. Journal of Differential Equations, 2015, 259(5): 2080-2100. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
-
Zhang Z J, Zhou S. Existence of entire positive
-convex radial solutions to Hessian equations and systems with weights[J]. Applied Mathematics Letters, 2015, 50(3): 48-55. [Google Scholar]
- Wang X J. A class of fully nonlinear elliptic equations and related functionals[J]. Indiana University Mathematics Journal, 1994, 43(1): 25-54. [CrossRef] [MathSciNet] [Google Scholar]
-
Sánchez J, Vergara V. Bounded solutions of a
-Hessian equation in a ball[J]. Journal of Differential Equations, 2016, 261(1): 797-820. [CrossRef] [MathSciNet] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.