Open Access
Issue
Wuhan Univ. J. Nat. Sci.
Volume 29, Number 3, June 2024
Page(s) 284 - 292
DOI https://doi.org/10.1051/wujns/2024293284
Published online 03 July 2024
  1. Ott E, Grebogi C, Yorke J A. Controlling chaos [J]. Physical Review Letters, 1990, 64(11): 1196-1199. [NASA ADS] [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  2. Shinbrot T, Ott E, Grebogi C, et al. Using chaos to direct trajectories to targets [J]. Physical Review Letters, 1990, 65(26): 3215-3218. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  3. Kostelich E J, Grebogi C, Ott E, et al. Higher dimensional targeting [J]. Physical Review E, 1993, 47(1): 305-310. [NASA ADS] [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  4. Pyragas K. Continuous control of chaos by self-controlling feedback [J]. Physics Letters A, 1992, 170: 421-428. [NASA ADS] [CrossRef] [Google Scholar]
  5. Ding Y T, Jiang W H, Wang H B. Delayed feedback control and bifurcation analysis of Rossler chaotic system[J]. Nonlinear Dynamics, 2010, 61(4): 707-715. [CrossRef] [MathSciNet] [Google Scholar]
  6. Wang F, Zhang J G. Response and bifurcation of fractional duffing oscillator under combined recycling noise and time-delayed feedback control[J]. Wuhan University Journal of Natural Sciences, 2023, 28 (5): 421-432. [CrossRef] [EDP Sciences] [Google Scholar]
  7. Sakamoto N, Van Der Schaft A J. Analytical approximation methods for the stabilizing solution of the Hamilton-Jacobi equation[J]. IEEE Transactions on Automatic Control, 2008, 53(10): 2335-2350. [CrossRef] [MathSciNet] [Google Scholar]
  8. Yuasa Y, Sakamoto N, Umemura Y. Optimal control designs for systems with input saturations and rate limiters[C]//SICE Annual Conference, 2010: 2042-2045. [Google Scholar]
  9. Sakamoto N. Case studies on the applications of the stable manifold approach for nonlinear optimal control design[J]. Automatica, 2013, 49(2): 568-576. [CrossRef] [MathSciNet] [Google Scholar]
  10. Fujimoto R, Sakamoto N. The stable manifold approach for optimal swing up and stabilization of an inverted pendulum with input saturation[C]// The 18th IFAC World Congress, 2011, 18: 8046-8051. [Google Scholar]
  11. Habaguchi Y, Sakamoto N, Nagata K. Nonlinear optimal stabilization of unstable periodic orbits [J]. International Federation of Automatic Control, 2015, 48-18: 215-220. [Google Scholar]
  12. Vaidyanathan S, Volos C. Analysis and adaptive control of a novel 3-D conservative no-equilibrium chaotic system [J]. Arch Control Sci, 2015, 25(3): 333-353. [CrossRef] [MathSciNet] [Google Scholar]
  13. Singh J P, Roy B K. Second order adaptive time varying sliding mode control for synchronization of hidden chaotic orbits in a new uncertain 4-D conservative chaotic system [J]. Trans Inst Meas Control, 2018, 40(13): 3573-3586. [NASA ADS] [CrossRef] [Google Scholar]
  14. Ahn C K. Fuzzy delayed output feedback synchronization for time-delayed chaotic systems [J]. Nonlinear Analysis: Hybrid Systems, 2010, 4(1):16-24. [CrossRef] [MathSciNet] [Google Scholar]
  15. Ahn C K. Neural network H chaos synchronization[J]. Nonlinear Dynamics, 2010, 60(3): 295-302. [CrossRef] [MathSciNet] [Google Scholar]
  16. Song Q K, Huang T W. Stabilization and synchronization of chaotic systems with mixed time-varying delays via intermittent control with non-fixed both control period and control width[J]. Neurocomputing, 2015, 154: 61-69. [CrossRef] [Google Scholar]
  17. Chen X Y, Liu Y, Ruan Q H, et al. Stabilization of nonlinear time-delay systems: Flexible delayed impulsive control[J]. Applied Mathematical Modelling, 2023, 114: 488-501. [Google Scholar]
  18. Li D K, Wei X M. Dislocated function projective partial synchronization between dynamical systems[J]. Alexandria Engineering Journal, 2023, 66: 919-926. [CrossRef] [Google Scholar]
  19. Li R H, Chen W S, Li S. Finite-time stabilization for hyper-chaotic Lorenz system families via adaptive control[J]. Applied Mathematical Modelling, 2013, 37(4): 1966-1972. [Google Scholar]
  20. Yan H,Gao Y B. Synchronization for chaotic Lure systems via delayed feedback PD control [J]. Journal of Nantong University, 2017, 16(4): 12-21(Ch). [Google Scholar]
  21. Li D K. Generalized dislocated modified functional projective synchronization of chaotic systems [J]. Journal of Southwest University, 2019, 41(11): 37-46(Ch). [Google Scholar]
  22. Li D K. Hopf bifurcation and circuit implementation of a new hyperchaotic Lorenz system [J]. Journal of Ningxia University, 2016, 37(3): 294-301(Ch). [Google Scholar]
  23. He H J, Cui Y, Sun G. Time-delay Rucklidge system Hopf bifurcation analysis and circuit simulation[J]. Chinese Journal of Computational Mechanics, 2019, 36(4): 542-547(Ch). [NASA ADS] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.