Open Access
Issue
Wuhan Univ. J. Nat. Sci.
Volume 29, Number 4, August 2024
Page(s) 315 - 322
DOI https://doi.org/10.1051/wujns/2024294315
Published online 04 September 2024
  1. Zhang X Q, Li C C, Tong X F, et al. Efficient human pose estimation via parsing a tree structure based human model[C]//2009 IEEE 12th International Conference on Computer Vision. New York: IEEE, 2009: 1349-1356. [Google Scholar]
  2. Sun M, Kohli P, Shotton J. Conditional regression forests for human pose estimation[C]//2012 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2012: 3394-3401. [CrossRef] [Google Scholar]
  3. Dantone M, Gall J, Leistner C, et al. Human pose estimation using body parts dependent joint regressors[C]//2013 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2013: 3041-3048. [CrossRef] [Google Scholar]
  4. Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2012, 60: 84-90. [Google Scholar]
  5. Tompson J, Jain A, LeCun Y, et al. Joint training of a convolutional network and a graphical model for human pose estimation[EB/OL]. [2023-05-20]. https://arxiv.org/pdf/1406.2984. [Google Scholar]
  6. Toshev A, Szegedy C. DeepPose: Human pose estimation via deep neural networks[C]//2014 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2014: 1653-1660. [CrossRef] [Google Scholar]
  7. He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). New York: IEEE, 2016: 770-778. [Google Scholar]
  8. Wei S H, Ramakrishna V, Kanade T, et al. Convolutional pose machines[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). New York: IEEE, 2016: 4724-4732. [CrossRef] [Google Scholar]
  9. Lin T Y, Maire M, Belongie S, et al. Microsoft COCO: Common objects in context[C]//European Conference on Computer Vision. Cham: Springer-Verlag, 2014: 740-755. [Google Scholar]
  10. Cao Z, Simon T, Wei S H, et al. Realtime multi-person 2D pose estimation using part affinity fields[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). New York: IEEE, 2017: 1302-1310. [CrossRef] [Google Scholar]
  11. Chen Y L, Wang Z C, Peng Y X, et al. Cascaded pyramid network for multi-person pose estimation[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2018: 7103-7112. [CrossRef] [Google Scholar]
  12. Li W B, Wang Z C, Yin B Y, et al. Rethinking on multi-stage networks for human pose estimation[EB/OL]. [2023-05-21]. http://arxiv.org/abs/1901.00148. [Google Scholar]
  13. Xiao B, Wu H P, Wei Y C. Simple baselines for human pose estimation and tracking[C]//European Conference on Computer Vision. Cham: Springer-Verlag, 2018: 472-487. [Google Scholar]
  14. Sun K, Xiao B, Liu D, et al. Deep high-resolution representation learning for human pose estimation[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New York: IEEE, 2019: 5686-5696. [CrossRef] [Google Scholar]
  15. Li J F, Wang C, Zhu H, et al. CrowdPose: Efficient crowded scenes pose estimation and a new benchmark[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New York: IEEE, 2019: 10855-10864. [Google Scholar]
  16. Andriluka M, Iqbal U, Insafutdinov E, et al. PoseTrack: A benchmark for human pose estimation and tracking[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2018: 5167-5176. [CrossRef] [Google Scholar]
  17. Redmon J, Divvala S, Girshick R, et al. You only look once: Unified, real-time object detection[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). New York: IEEE, 2016: 779-788. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.