Open Access
Issue
Wuhan Univ. J. Nat. Sci.
Volume 29, Number 6, December 2024
Page(s) 517 - 522
DOI https://doi.org/10.1051/wujns/2024296517
Published online 07 January 2025
  1. Golubovic L. Interfacial coarsening in epitaxial growth models without slope selection[J]. Phys Rev Lett, 1997, 78: 90-93. [NASA ADS] [CrossRef] [Google Scholar]
  2. Moldovan D, Golubovic L. Interfacial coarsening dynamics in epitaxial growth with slope selection[J]. Phys Rev E, 2000, 61: 6190-6214. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  3. Li B, Liu J G. Thin film epitaxy with or without slope selection[J]. Eur J Appl Math, 2003, 14: 713-743. [CrossRef] [Google Scholar]
  4. Qiao Z, Zhang Z, Tang T. An adaptive time-stepping strategy for the molecular beam epitaxy models[J]. SIAM J Sci Comput, 2011, 33: 1395-1414. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  5. Luo F, Xie H, Xie M, et al. Adaptive time-stepping algorithms for molecular beam epitaxy: Based on energy or roughness[J]. Appl Math Lett, 2020, 99: 105991. [CrossRef] [MathSciNet] [Google Scholar]
  6. Liao H L, Song X, Tang T, et al. Analysis of the second order BDF scheme with variable steps for the molecular beam epitaxial model without slope selection[J]. Sci China Math, 2021, 64(5): 887-902. [CrossRef] [MathSciNet] [Google Scholar]
  7. Zhang J, Zhao C. Sharp error estimate of BDF2 scheme with variable time steps for molecular beam expitaxial models without slop selection[J]. J Math, 2022, 42: 377-401. [Google Scholar]
  8. Shen J, Xu J, Yang J. The scalar auxiliary variable (SAV) approach for gradient flows[J]. J Comput Phys, 2018, 353: 407-416. [Google Scholar]
  9. Cheng Q, Shen J, Yang X. Highly efficient and accurate numerical schemes for the epitaxial thin film growth models by using the SAV approach[J]. J Sci Comput, 2019, 78: 1467-1487. [CrossRef] [MathSciNet] [Google Scholar]
  10. Shen J, Xu J, Yang J. A new class of efficient and robust energy stable schemes for gradient flows[J]. SIAM Review, 2019, 61(3): 474-506. [CrossRef] [MathSciNet] [Google Scholar]
  11. Huang F, Shen J, Yang Z. A highly efficient and accurate new scalar auxiliary variable approach for gradient flows[J]. SIAM J Sci Comput, 2020, 42(4): A2514-A2536. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  12. Shen J, Tang T, Wang L. Spectral Methods: Algorithms, Analysis and Applications[M]. Berlin Heidelberg: Springer-Verlag, 2011. [CrossRef] [Google Scholar]
  13. Liao H L, Ji B, Wang L, et al. Mesh-robustness of an energy stable BDF2 scheme with variable steps for the Cahn-Hilliard model[J]. J Sci Comput, 2022, 92: 52. [CrossRef] [MathSciNet] [Google Scholar]
  14. Huang J, Yang C, Wei Y. Parallel energy-stable solver for a coupled Allen-Cahn and Cahn-Hilliard system[J]. SIAM J Sci Comput, 2020, 42(5): C294-C312. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.