Open Access
Issue
Wuhan Univ. J. Nat. Sci.
Volume 29, Number 6, December 2024
Page(s) 508 - 516
DOI https://doi.org/10.1051/wujns/2024296508
Published online 07 January 2025
  1. Zhang L, Ao J J. On a class of inverse Sturm-Liouville problems with eigenparameter-dependent boundary conditions[J]. Applied Mathematics and Computation, 2019, 362: 124553. [CrossRef] [MathSciNet] [Google Scholar]
  2. Zhang L, Ao J J. Inverse spectral problem for Sturm-Liouville operator with coupled eigenparameter-dependent boundary conditions of Atkinson type[J]. Inverse Problems in Science and Engineering, 2019, 27(12): 1689-1702. [Google Scholar]
  3. Volkmer H. Eigenvalue problems of Atkinson, Feller and Krein, and their mutual relationship[J]. Electronic Journal of Differential Equations, 2005, 2005(48):15-24 . [Google Scholar]
  4. Kong Q, Volkmer H, Zettl A. Matrix representations of Sturm-Liouville problems with finite spectrum[J]. Results in Mathematics, 2009, 54(1):103-116. [CrossRef] [MathSciNet] [Google Scholar]
  5. Atkinson F V. Discrete and Continuous Boundary Problems[M]. New York: Academic Press, 1964. [Google Scholar]
  6. Kong Q, Wu H, Zettl A. Sturm-Liouville problems with finite spectrum[J]. Journal of Mathematical Analysis and Applications, 2001, 263(2): 748-762. [CrossRef] [MathSciNet] [Google Scholar]
  7. Ren G J, Zhu H. Jump phenomena of the n-th eigenvalue of discrete Sturm-Liouville problems with application to the continuous case[J]. Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 2023, 153(2): 619-653. [CrossRef] [MathSciNet] [Google Scholar]
  8. Xu S F. An Introduction to Inverse Algebraic Eigenvalue Problems[M]. Beijing: Peking University Press, 1998(Ch). [Google Scholar]
  9. Freiling G, Yurko V A. Inverse Sturm-Liouville Problems and Their Applications[M]. New York: Nova Science Publishers, 2001. [Google Scholar]
  10. Zettl A. Sturm-Liouville Theory[M]. Providence, RI: Amer Math Soc, 2005. [Google Scholar]
  11. Gladwell G M L. Inverse Problems in Vibration[M]. 2nd Ed. Dordrecht: Kluwer Academic Publishers, 2004. [Google Scholar]
  12. Simon B. The classical moment problem as a self-adjoint finite difference operator[J]. Advances in Mathematics, 1998, 137(1): 82-203. [Google Scholar]
  13. Shieh C T. Some inverse problems on Jacobi matrices[J]. Inverse Problems, 2004, 20(2): 589-600. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  14. Bebiano N, da Providência J. Inverse problems for pseudo-Jacobi matrices: Existence and uniqueness results[J]. Inverse Problems, 2011, 27(2): 025005. [Google Scholar]
  15. Ferguson W E. The construction of Jacobi and periodic Jacobi matrices with prescribed spectra[J]. Mathematics of Computation, 1980, 35(152): 1203-1220. [CrossRef] [MathSciNet] [Google Scholar]
  16. Hochstadt H. On some inverse problems in matrix theory[J]. Archiv Der Mathematik, 1967, 18(2): 201-207. [CrossRef] [MathSciNet] [Google Scholar]
  17. Mirzaei H. Inverse eigenvalue problems for pseudo-symmetric Jacobi matrices with two spectra[J]. Linear and Multilinear Algebra, 2017:1322032. [Google Scholar]
  18. Su Q F. Inverse spectral problem for pseudo-Jacobi matrices with partial spectral data[J]. Journal of Computational and Applied Mathematics, 2016, 297: 1-12. [CrossRef] [MathSciNet] [Google Scholar]
  19. Ambarzumian V. Über eine frage der eigenwerttheorie[J]. Zeitschrift Für Physik, 1929, 53(9): 690-695. [CrossRef] [Google Scholar]
  20. Borg G. Eine umkehrung der Sturm-Liouvilleschen eigenwertaufgabe[J]. Acta Mathematica, 1946, 78(1): 1-96. [Google Scholar]
  21. Levinson N. The inverse Sturm-Liouville problem[J]. Mat Tidskr, 1949, B: 25-30. [Google Scholar]
  22. Gao C H, Du G F. Uniqueness of nonlinear inverse problem for Sturm-Liouville operator with multiple delays[J]. Journal of Nonlinear Mathematical Physics, 2024, 31(1):15. [NASA ADS] [CrossRef] [Google Scholar]
  23. Fu S Z, Xu Z B, Wei G S. The interlacing of spectra between continuous and discontinuous Sturm-Liouville problems and its application to inverse problems[J]. Taiwanese Journal of Mathematics, 2012, 16(2): 651-663. [MathSciNet] [Google Scholar]
  24. Wei Z Y, Wei G S. Inverse spectral problem for non-self-adjoint Dirac operator with boundary and jump conditions dependent on the spectral parameter[J]. Journal of Computational and Applied Mathematics, 2016, 308: 199-214. [Google Scholar]
  25. Yang C F, Yang X P. Inverse Sturm-Liouville problems with discontinuous boundary conditions[J]. Applied Mathematics Letters, 2011, 74: 1-6. [Google Scholar]
  26. Fulton C T, Pruess S. Numerical methods for a singular eigenvalue problem with eigenparameter in the boundary conditions[J]. Journal of Mathematical Analysis and Applications, 1979, 71(2): 431-462. [CrossRef] [MathSciNet] [Google Scholar]
  27. Walter J. Regular eigenvalue problems with eigenvalue parameter in the boundary condition[J]. Mathematische Zeitschrift, 1973, 133(4): 301-312. [CrossRef] [MathSciNet] [Google Scholar]
  28. Binding P A, Browne P J, Watson B A. Sturm-Liouville problems with boundary conditions rationally dependent on the eigenparameter, II[J]. Journal of Computational and Applied Mathematics, 2002, 148(1): 147-168. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  29. Binding P A, Browne P J, Watson B A. Inverse spectral problems for Sturm-Liouville equations with eigenparameter dependent boundary conditions[J]. Journal of the London Mathematical Society, 2000, 62(1): 161-182. [CrossRef] [MathSciNet] [Google Scholar]
  30. Du G F, Gao C H. Inverse problem for Sturm-Liouville operator with complex-valued weight and eigenparameter dependent boundary conditions[J]. Journal of Inverse and Ill-posed Problems, 2024. DOI: https://doi.org/10.1515/jiip-2023-0081. [Google Scholar]
  31. Fulton C T. Two-point boundary value problems with eigenvalue parameter contained in the boundary conditions[J]. Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 1977, 77(3/4): 293-308. [CrossRef] [MathSciNet] [Google Scholar]
  32. Kong Q K, Zettl A. Inverse Sturm-Liouville problems with finite spectrum[J]. Journal of Mathematical Analysis and Applications, 2012, 386(1): 1-9. [Google Scholar]
  33. Volkmer H, Zettl A. Inverse spectral theory for Sturm-Liouville problems with finite spectrum[J]. Proceeding of American Mathematics Society, 2007, 135(4): 1129-1132. [CrossRef] [Google Scholar]
  34. Ao J J, Zhang L. An inverse spectral problem of Sturm-Liouville problem with transmission conditions[J]. Mediterranean Journal of Mathematics, 2020, 17(5): 160. [CrossRef] [Google Scholar]
  35. Cai J M, Zheng Z W. Inverse spectral problems for discontinuous Sturm-Liouville problems of Atkinson type[J]. Applied Mathematics and Computation, 2018, 327: 22-34. [CrossRef] [MathSciNet] [Google Scholar]
  36. Ao J J, Sun J. Matrix representations of Sturm-Liouville problems with eigenparameter-dependent boundary conditions[J]. Linear Algebra and Its Applications, 2013, 438(5): 2359-2365. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.