Open Access
Issue
Wuhan Univ. J. Nat. Sci.
Volume 29, Number 6, December 2024
Page(s) 508 - 516
DOI https://doi.org/10.1051/wujns/2024296508
Published online 07 January 2025

© Wuhan University 2024

Licence Creative CommonsThis is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

0 Introduction

This paper focuses on the inverse spectral theory of Atkinson-type Sturm-Liouville problems (SLPs) with a class of non-self-adjoint boundary conditions containing the spectral parameter (also called eigenparameter-dependent boundary conditions). Since such problems have a finite number of eigenvalues, we will take advantage of the associated finite dimensional inverse eigenvalue problems of the form

V Z = λ W Z , (1)

where V and W are square matrices over the complex and V is an "almost" Jacobi matrix (in fact, a kind of generalized pseudo-Jacobi matrix), and W is 'almost' diagonal.

Consider the eigenvalue problem consisting of the Sturm-Liouville equation

- ( p f ' ) ' + q f = ν w f ,   o n   J = [ α , β ] , - < α < β < + , (2)

subject to the boundary conditions (BCs)

A ν F ( α ) + B ν F ( β ) = 0 ,   F = [ f , p f ' ] T , (3)

where Aν=(νξ1'+ξ1 0 νξ2'+ξ20),Bν=(0νς1'+ς1 0 νς2'+ς2),with ξj,ξj',ςj,ςj'R ,  j=1,2,satisfying γ1=ξ1'ξ2-ξ1ξ2'<0,γ2=ς1ς2'-ς1'ς2>0or γ1=ξ1'ξ2-ξ1ξ2'>0, γ2=ς1ς2'-ς1'ς2<0.ν is the spectral parameter.

In the case of bothγ1>0and γ2>0, the corresponding inverse spectral problems have been investigated in Ref. [1], in which the problems are self-adjoint and hence with real eigenvalues. However, it is well known that the conditions as mentioned above mean that the boundary conditions (3) are non-self-adjoint; thus, the eigenvalues of this problem may not be real, and the distribution of eigenvalues is more complex than the self-adjoint cases. The inverse Atkinson-type SLPs with coupled self-adjoint boundary conditions containing the spectral parameter can also be found in Ref. [2].

Similar with the definition in Ref. [1], the Sturm-Liouville equation (2) is said to be of Atkinson-type if there exists a partition of the domain interval [α,β],

α = α 0 < β 0 < α 1 < β 1 < < α n < β n = β , (4)

for some positive integern>1, such that

r = 1 p = 0 ,   o n   [ α j , β j ] , j = 0,1 , , n , β j α j r d x > 0 , j = 1,2 , , n ; (5)

q = 0 ,   o n   [ β j - 1 , α j ] ,   j = 1,2 , , n ; (6)

and

w = 0 ,   o n   [ β j - 1 , α j ] ,   j = 1,2 , , n , α j β j w d x > 0 ,   j = 0,1 , , n . (7)

SLPs (2) and (3) are said to be of Atkinson-type if (2) is of Atkinson-type, and BCs (3) are self-adjoint or non-self-adjoint.

The problems of Atkinson-type have some significant backgrounds, for instance, frequencies of vibrating strings and diffusion operators[3]. Following the statement in Ref. [4], in the present work, we still call such problems the Atkinson-type because such problems are initiated by Atkinson and Kong et al[5,6], though the BCs are non-self-adjoint. The problems that can be transferred into the problems of Atkinson-type also can be found in recent studies in Ref. [7] for discrete Sturm-Liouville problems.

It is well known that matrix eigenvalue problems, such as the eigenvalue problems of Jacobi matrices and pseudo-Jacobi matrices, have wide applications[8]. On the other hand, the spectral theory of Sturm-Liouville problems also arises from many practical problems and has been widely studied in various aspects[9,10]. It is well known that the inverse matrix eigenvalue problems and the inverse Sturm-Liouville problems are important research topics and have been intensely investigated in mathematics, physics, and some other fields in engineering, such as the problems associated with vibrating systems[11], classical moment problems[12] and quantum mechanics[13]. There have been numerous studies on inverse matrix eigenvalue problems in the last decades[8,14-18]. The inverse Sturm-Liouville problems are initiated by the well-known Ambarzumian's[19], Borg's[20], and Levinson's[21] works, and the extending results can be found in some literatures such as Refs. [9,22-25].

Sturm-Liouville problems with boundary conditions containing the spectral parameter have appeared in some physical problems and engineering problems, such as string vibration and heat transfer problems[26,27]. Hence, it is an important research topic in mathematical physics[26-31].

Based on the above, in the present paper, a class of inverse Atkinson-type Sturm-Liouville problems with non-self-adjoint boundary conditions containing the spectral parameter (2),(3) are investigated by using the corresponding inverse matrix eigenvalue problem of (1), which can be seen as a generalization of Ref. [32] to such problems.

The inverse Atkinson-type Sturm-Liouville problems were initiated by Kong and Volkmer et al[32,33]. In 2012, Kong and Zettl[32] gave an investigation on the inverse Atkinson-type Sturm-Liouville problems by taking advantage of the so-called matrix representations of these problems presented in Ref. [4] and a generalized method of the inverse matrix eigenvalue problems from Xu[8]. In Ref. [32], the authors also compared the classical inverse Sturm-Liouville problems with the inverse Atkinson-type Sturm-Liouville problems and showed their differences. In recent years, several works on such problems have been made by some researchers[1,2,34,35]. However, as far as we know, there is no such result for non-self-adjoint cases.

Some basic notations are needed to be introduced as follows. Let the equation be given as in (2) and the coefficients satisfy the conditions (5)-(7), and let σ(ξ1,ξ2,ξ1',ξ2',ς1,ς2,ς1',ς2')denote the spectrum of the problem (2), (3) to highlight the dependence of the spectrum on the parameters. Assume that kN+and k>4,and we use Mkto represent the set of complex k×kmatrices. For anyCMk, σ(C)denotes all the eigenvalues ofC. Furthermore, letC1andC1be the principal submatrices, which are obtained by removing the first row and column and the last row and column fromC, respectively. For a giveneC, letC1[e] denote the matrix, where we add eto the (1,1) entry ofC1 and letC1[e] denote the matrix, where we add e to the (k-1,k-1)entry ofC1. For anyC,DMk, if there exists a nontrivial vectoruk such that(C-ν*D)u=0, then we say that ν*is an eigenvalue of the matrix-pair(C,D). Similarly, letσ(C,D) denote all the eigenvalues of(C,D). Then it is easy to see,ν*σ(C)if and only ifν*σ(C,Ik), whereIk is the identity matrix inMk.

The arrangement of this paper is as follows. Section 1 contains the equivalences between the matrix problem and the problem studied here. As a main bridge, the inverse matrix eigenvalue problems related to the considered problems are stated in Section 2. The main result and its proof are given in Section 3. A numerical algorithm and related examples are posted in Section 4.

1 Equivalence Matrix Representations of the Problems

To present our result, let us introduce the following lemma firstly, which implies the equivalence between the Atkinson-type SLPs and the SLPs with piecewise constant coefficients.

Lemma 1[4] Assume r,q,wL(J , ) and satisfy the conditions (5)-(7), where L(J , ) denotes the complex-valued functions which are lebesque inteqrable on J. Let

{ p j = ( β j - 1 α j r d x ) - 1 ,   j = 1,2 , , n , q j = α j β j q d x , w j = α j β j w d x ,   j = 0,1 , , n . (8)

If we define the piecewise constant functions p˜(x)=1r˜(x), q˜(x) and w˜(x) on [α,β] by

p ˜ ( x ) = 1 r ˜ ( x ) = { p j ( α j - β j - 1 ) ,   x ( β j - 1 , α j ) ,   j = 1,2 , , n , ,                 x [ α j   , β j ] ,   j = 0,1 , , n ;

q ˜ ( x ) = { q j ( β j - α j ) ,    x [ α j   , β j ] ,   j = 0,1 , , n ,        0 ,               x ( β j - 1 , α j ) ,   j = 1,2 , , n ;

w ˜ ( x ) = { w j ( β j - α j ) ,    x [ α j   , β j ] ,   j = 0,1 , , n ,         0 ,              x ( β j - 1 , α j ) ,   j = 1,2 , , n .

Note that p˜(x)= on [αj ,βj] means that r˜(x)=0 on [αj ,βj], j=0,1,,n.

Then, the eigenvalues of problems (2), (3) and the problem consisting of the equation

- ( p ˜ f ' ) ' + q ˜ f = ν w ˜ f ,   o n   J = [ α , β ] , (9)

and the same BCs (3) are exactly the same eigenvalues.

Lemma 1   implies that for a fixed BCs (3) and a given partition of the interval [α,β], there exists a family of Atkinson-type SLPs such as they have exactly the same eigenvalues as problem (9), (3). Such a family is called the equivalent family of problem (9), (3). Indeed, every problem in this equivalent family must have the same pj, qj and wj defined by (8).

We will use the following lemmas and Theorem 2 to prove our main theorem (Theorem 3), which indicates the equivalences between Atkinson-type SLPs with non-self-adjoint boundary conditions containing the spectral parameter and the matrix eigenvalue problems given in Ref. [36].

Lemma 2[36] Assume that in BCs (3), the parameters satisfy the conditions ξj, ξj', ςj, ςj'R  , j=1,2,and γ1=ξ1'ξ2-ξ1ξ2'<0, γ2=ς1ς2'-ς1'ς2>0or γ1=ξ1'ξ2-ξ1ξ2'>0, γ2=ς1ς2'-ς1'ς2<0. Let us define an(n+3)×(n+3) generalized pseudo-Jacobi matrix

P = [ ξ 2 ξ 1 1 p 1 - p 1 - p 1 p 1 + p 2 - p 2 - p n - 1 p n - 1 + p n - p n - p n p n - 1 ς 1 ς 2 ] (10)

and a diagonal matrix

Q = d i a g ( 0 , q 0 , q 1 , , q n , 0 ) (11)

as well as an "almost" diagonal matrix

W = [ - ξ 2 ' - ξ 1 ' w 0 w n - ς 1 ' - ς 2 ' ] (12)

Here the "almost" diagonal matrix means that except for the (1,2) and(n+3,n+2) entries, it is diagonal.

Then

σ ( ξ 1 , ξ 2 , ξ 1 ' , ξ 2 ' , ς 1 , ς 2 , ς 1 ' , ς 2 ' ) = σ ( P + Q , W )

i.e. the spectrum of the problem (9), (3), and the spectrum of the matrix-pair (P+Q,W) are the same.

Lemma 3   Assume that in BCs (3), the parameters satisfy the conditions ξ1=ξ2=0, ξ2'<0, ςj,ςjR , j=1,2, and γ2=ς1ς2'-ς1'ς2>0. Let us define an(n+2)×(n+2)generalized pseudo-Jacobi matrix

P 1 [ - ξ 1 ' ξ 2 ' ] = [ p 1 - ξ 1 ' ξ 2 ' - p 1 - p 1 p 1 + p 2 - p 2 - p n - 1 p n - 1 + p n - p n - p n p n - 1 ς 1 ς 2 ] (13)

and a diagonal matrix

Q 1 = d i a g ( q 0 , q 1 , , q n , 0 ) , (14)

as well as an "almost" diagonal matrix

W 1 = [ w 0 w 1 w n - ς 1 ' - ς 2 ' ] . (15)

Then

σ ( 0,0 , ξ 1 ' , ξ 2 ' , ς 1 , ς 2 , ς 1 ' , ς 2 ' ) = σ ( P 1 [ - ξ 1 ' ξ 2 ' ] + Q 1 , W 1 ) .

Proof   The proof is similar to the proof of Lemma 2 in Ref. [36]; since it is routine, we omit the details.

Lemma 4   Assume that in BCs (3), the parameters satisfy the conditions ς1=ς2=0, ς2'<0, ξj,ξjR, j=1,2, and γ1=ξ1'ξ2-ξ1ξ2'>0. Let us define an (n+2)×(n+2) generalized pseudo-Jacobi matrix

P 1 [ ς 1 ' ς 2 ' ] = [ ξ 2 ξ 1 1 p 1 - p 1 - p 1 p 1 + p 2 - p 2 - p n - 1 p n - 1 + p n - p n - p n p n + ς 1 ' ς 2 ' ] (16)

and a diagonal matrix

Q 1 = d i a g ( 0 , q 0 , q 1 , , q n ) , (17)

as well as an "almost" diagonal matrix

W 1 = [ - ξ 2 ' - ξ 1 ' w 0 w n - 1 w n ] . (18)

Then

σ ( ξ 1 , ξ 2 , ξ 1 ' , ξ 2 ' , 0,0 , ς 1 ' , ς 2 ' ) = σ ( P 1 [ ς 1 ' ς 2 ' ] + Q 1 , W 1 ) .

Proof   The proof is similar with those in Lemma 3.

Remark 1   It can be noted that in Lemmas 2-4, the following equalities hold

( P + Q ) 1 [ - ξ 1 ' ξ 2 ' ] = P 1 [ - ξ 1 ' ξ 2 ' ] + Q 1 , ( P + Q ) 1 [ ς 1 ' ς 2 ' ] = P 1 [ ς 1 ' ς 2 ' ] + Q 1 .

2 Inverse Matrix Eigenvalue Problems

In this section, we discuss the isospetral inverse matrix eigenvalue problems. Compared with the matrices given in Lemmas 2-4, we first consider the so-called generalized pseudo-Jacobi matrix in Mk, which takes the form as

J g p = [ η 1 ϵ 1 l 1 ζ 1 ζ 1 η 2 ζ 2 ζ k - 2 η k - 1 ζ k - 1 ϵ 2 l 2 ζ k - 1 η k ] . (19)

Definition 1   If a matrix JgpMk takes the form of (19) and satisfies with the conditions ζ1>0, ζj<0 for allj=2,,k-1, ϵ1=ϵ2=±1, l1,l2>0, then it is called a generalized pseudo-Jacobi matrix.

Definition 2   If a matrix JgMk takes the form as

J g = [ η ^ 1 l ^ 1 ζ ^ 1 ζ ^ 1 η ^ 2 ζ ^ 2 ζ ^ k - 2 η ^ k - 1 ζ ^ k - 1 l ^ 2 ζ ^ k - 1 η ^ k ] , (20)

and satisfies with the conditions ζ^j>0, j=1,,k-1, and l^1<0, l^2<0, then it is called a generalized positive pseudo-Jacobi matrix.

If we setL^=diag(1,-l^1,,-l^1,-l^1l^2l^2)and let J=L^JgL^-1, then the matrix Jg can be transformed to a positive pseudo-Jacobi matrix J of the form

J = [ η ^ 1 - - l ^ 1 ζ ^ 1 - l ^ 1 ζ ^ 1 η ^ 2 ζ ^ 2 ζ ^ k - 2 η ^ k - 1 l ^ 2 ζ ^ k - 1 l ^ 2 ζ ^ k - 1 η ^ k ] .

Since it is a similarity transformation, hence the eigenvalues of matrices J and Jg are the same.

To best understand the theorems below, we still need to introduce a kind of generalized pseudo-Jacobi matrix MMk, which takes the form

M = [ η ̌ 1 l ̌ 1 ζ ̌ 1 ζ ̌ 1 η ̌ 2 ζ ̌ 2 ζ ̌ k - 2 η ̌ k - 1 ζ ̌ k - 1 - l ̌ 2 ζ ̌ k - 1 η ̌ k ] , (21)

where ζ̌1>0, ζ̌j<0 for all j=2,,k-1, ľ1, ľ20.

Lemma 5   (see Ref. [14]) Let {νj: j=1,,k}and{λj: j=1,,k-1} be two sets of numbers satisfying one of the following four possibilities:

1 )   λ 1 > ν 1 > λ 2 > ν 2 > > ν k - 2 > λ k - 1 > ν k - 1 > ν k ; 2 )   ν k > ν 1 > λ 1 > ν 2 > λ 2 > > ν k - 1 > λ k - 1 ; 3 )   t h e r e   e x i s t s   [ h { 1 , , k - 2 } ]   s u c h   t h a t : λ 1 > ν 1 > > λ h > ν h > ν k > ν h + 1 > λ h + 1 > > ν k - 1 > λ k - 1 ;   4 )   λ 1 > ν 1 > λ 2 > ν 2 > > ν k - 2 > λ k - 1 ,   a n d   ν k = ν k - 1 _ _ _ _ _ . } (22)

Then, there exists a pseudo-Jacobi matrix JMk (may not be unique) such that σ(J)={νj: j=1,,k} and σ(J1)={λj: j=1,,k-1}.

Theorem 1   Let {νj: j=1,,k} and {λj: j=1,,k-1} be two sets of given numbers satisfying one of the four possibilities in (22). Then for arbitrary l^1<0, l^2>0, there exists a generalized positive pseudo-Jacobi matrix JgMk such that σ(Jg)={νj: j=1,,k} and σ((Jg)1)={λj: j=1,,k-1}.

Proof   Let {νj: j=1,,k} and {λj: j=1,,k-1} be two sets of numbers satisfying one of the four possibilities in (22). Then by Lemma 5, there exists a positive pseudo-Jacobi matrix JMk such that

σ ( J ) = { ν j :   j = 1 , , k }   a n d   σ ( J 1 ) = { λ j :   j = 1 , , k - 1 } .

Now for arbitrary l^1<0, l^2>0, there exists a generalized positive pseudo-Jacobi matrix JgMk such that Jg=L^-1JL^, (Jg)1=L^-1J1L,where L^=diag(1,-l^1,,-l^1,-l^1l^2l^2). This implies that the eigenvalues of matrices J and Jg are the same. Thus, σ(Jg)={νj: j=1,,k} and σ((Jg)1)={λj: j=1,,k-1}.

The proof is finished.

It is easy to see that if l^1=-1, l^2=1 in the matrix Jg, then the generalized positive pseudo-Jacobi matrix Jg will reduce to the positive pseudo-Jacobi matrix J. We now state a theorem on the inverse eigenvalue problem for a generalized pseudo-Jacobi matrix, which can be seen as an extension of Theorem 1.

Theorem 2   Let {νj: j=1,,k} and {λj: j=1,,k-1} be two sets of numbers satisfying one of the four possibilities in (22).

Let W=[-ξ2'-ξ1'w0wn-ς1'-ς2']be an "almost" diagonal matrix in which wj>0 for j=0,1,,k-3, and ξ2'<0, ς2'<0. Then for arbitrary l^1<0, l^2>0, there exists a generalized pseudo-Jacobi matrix MMk such that

σ ( M , W ) = { ν j :   j = 1 , , k }   a n d    σ ( M 1 [ - ξ 1 ' ξ 2 ' ] + W 1 ) = { λ j :   j = 1 , , k - 1 } . (23)

Proof   First, from Theorem 1, we know that there exists a generalized positive pseudo-Jacobi matrix JgMk such that σ(Jg)={νj: j=1,,k} and σ((Jg)1)={λj: j=1,,k-1}.

Now, for each ν=νj, j=1,,k, there exists a nontrivial uk such that (Jg-νIk)u=0.

Let us set H=[1-ξ1'ξ2'11-ς1'ς2'1] , and WH=R2. Then we have R=WH:=diag(-ξ2',w0,

- w 1 , ,   ( - 1 ) k - 3 w k - 3 ,   ( - 1 ) k - 2 - ς 2 ' ) . If we let u=RH-1u˜, and left multiplying both sides of the equation (Jg-νIk)u=0 by R we obtain

( R J g R H - 1 - ν R 2 H - 1 ) u ˜ = 0 .

Now by setting M=RJgRH-1, we arrive at (M-νW)u˜=0. Therefore,

{ ζ ̌ 1 = - ξ 2 ' w 0 ζ ^ 1 , ζ ̌ 2 = w 0 w 1 ζ ^ 2 ,                 ζ ̌ k - 2 = ( - 1 ) 2 k - 7 w k - 4 w k - 3 ζ ^ k - 2 , ζ ̌ k - 1 = ( - 1 ) 2 k - 5 - ς 2 ' w k - 3 ζ ^ k - 1 ; { η ̌ 1 = - ξ 2 ' η ^ 1 , η ̌ 2 = w 0 η ^ 2 + ξ 1 ' ξ 2 ' ζ ̌ 1 ,                  η ̌ k - 1 = w k - 3 η ^ k - 1 + ς 1 ' ς 2 ' ζ ̌ k - 1 , η ̌ k = - ς 2 ' η ^ k ;  

{ l ̌ 1 ζ ̌ 1 = - ξ 1 ' ζ ^ 1 + l ^ 1 ζ ̌ 1 , - l ̌ 2 ζ ̌ k - 1 = - ς 1 ' ζ ^ k - 1 + l ^ 2 ζ ̌ k - 1 .

It is clear νσ(M,W), and MMk is a generalized pseudo-Jacobi matrix. Similarly, for each λ=λj, j=1,,k-1, the same argument also applies. This means that M1[-ξ1'ξ2']=R1(Jg)1R1(H1)-1,W1=R12(H1)-1 and λσ(M1[-ξ1'ξ2']+W1). Thus, we can conclude that

σ ( J g ) σ ( M , W )   a n d   σ ( ( J g ) 1 ) σ ( M 1 [ - ξ 1 ' ξ 2 ' ] + W 1 ) .   (24)

On the other hand, it is easy to get

σ ( J g ) σ ( M , W )   a n d   σ ( ( J g ) 1 ) σ ( M 1 [ - ξ 1 ' ξ 2 ' ] + W 1 ) , (25)

by reversing the above steps.

The proof is finished following (24) and (25).

Corollary 1   The statement of Theorem 2 still holds true, when M1[-ξ1'ξ2'] and W1 are replaced by M1[ς1'ς2'] and W1, respectively.

Corollary 2   The statement of Theorem 2 still holds true, when the condition wj>0 is replaced by wj<0 for j=0,1,,k-3.

3 Main Result and Proof

We now state our result on the inverse problem of SLPs with non-self-adjoint boundary conditions containing the spectral parameters (2), (3).

Theorem 3   Let ξj, ξj', ςj, ςj'R, j=1,2 be priori given numbers and satisfy the conditions γ1=ξ1'ξ2-ξ1ξ2'<0, γ2=ς1ς2'-ς1'ς2>0 and ξ2'<0, ς2'<0. Let {νj: j=1,,k} and {λj: j=1,,k-1} be two sets of numbers satisfying one of the four possibilities in (22). Let n=k-3. Then we have that for any -<α<β<+, any partition (4) on J , and any wL( J , R) satisfying (7):

(a) There exist p,qL(J  , R) satisfying (5) and (6) such that the associated equivalent family of the problem (2), (3) has

σ ( ξ 1 , ξ 2 , ξ 1 ' , ξ 2 ' , ς 1 , ς 2 , ς 1 ' , ς 2 ' ) = { ν j :   j = 1 , , k } ,

σ ( 0,0 , ξ 1 ' , ξ 2 ' , ς 1 , ς 2 , ς 1 ' , ς 2 ' ) = { λ j :   j = 1 , , k - 1 } .

(b) There exist p,qL(J , R)satisfying (5) and (6) such that the associated equivalent family of the problem (2), (3) has

σ ( ξ 1 , ξ 2 , ξ 1 ' , ξ 2 ' , ς 1 , ς 2 , ς 1 ' , ς 2 ' ) = { ν j :   j = 1 , , k } ,

σ ( ξ 1 , ξ 2 , ξ 1 ' , ξ 2 ' , 0,0 , ς 1 ' , ς 2 ' ) = { λ j :   j = 1 , , k - 1 } .

Proof   Here, we only prove (a), since (b) can be proved similarly. Firstly, for a given partition (4) of [α,β], we define wj=αjβjwdx, j=0,1,,n,

W = [ - ξ 2 ' - ξ 1 ' w 0 w n - ς 1 ' - ς 2 ' ] .

By (7), we know wj>0, j=0,1,,n. Since k=n+3, from Theorem 2, we have that there exists a generalized pseudo-Jacobi matrix MMn+3, which takes the form of (21) and satisfies conditions ζ̌1=1,ζ̌n+2=-1,η̌1=ξ2,η̌n+3=ς2,ľ1=ξ1 and ľ2=ς1 such that σ(M,W)={νj: j=1,,n+3} and σ(M1[-ξ1'ξ2'],W1)={λj: j=1,,n+2}.

Then we let

p j - 1 = - ζ ̌ j ,   j = 2 , , n + 1 ; q j - 1 = η ̌ j + 1 - p j - 1 - p j , j = 2 , , n ; q 0 = η ̌ 2 - p 1 ,   q n = η ̌ n + 2 - p n ,

and define the corresponding matrices P,Q,P1[-ξ1'ξ2'] and Q1 by (10), (11), (13) and (14), respectively. It is clear that pj>0, j=0,1,,n and M=P+Q,M1[-ξ1'ξ2']=P1[-ξ1'ξ2']+Q1. It is still worth noting that (W)1=W1 by (12) and (15). Therefore, we can arrive at

σ ( P + Q , W ) = { ν j :   j = 1 , , n + 3 } ,

and

σ ( P 1 [ - ξ 1 ' ξ 2 ' ] + Q 1 ,   W 1 ) = { λ j :   j = 1 , , n + 2 } .

By Lemmas 2 and 3 we now have that for (9), (3),

σ ( ξ 1 , ξ 2 , ξ 1 ' , ξ 2 ' , ς 1 , ς 2 , ς 1 ' , ς 2 ' ) = { ν j :   j = 1 , , n + 3 } ,

σ ( 0,0 , ξ 1 ' , ξ 2 ' , ς 1 , ς 2 , ς 1 ' , ς 2 ' ) = { λ j :   j = 1 , , n + 2 } .

Lastly, we observe that the choice of pj, j=1,,n and qj, j=0,,n is unique, and all p,qL(J , R)by this choice form an equivalent family of SLPs. Then, the proof is completed.

4 Numerical Algorithm and Examples

The following algorithm will be given to solve the inverse SLPs with non-self-adjoint boundary conditions containing the spectral parameters (9), and (3), and we will provide examples to test the algorithm.

Algorithm 1

Step 1   Input ν1,ν2,,νk and λ1,λ2,,λk-1.

Step 2   Construct the matrix J by the proof

of Theorem 5 in Ref. [14].

Step 3   Set l^1<0,l^2>0, and L^. Compute Jg=L^-1JL^.

Step 4   Set M, R, H. Compute M=RJgRH-1.

Step 5   Obtain pj, j=1,,n and qj, j=0,,n by Theorem 3 .

Example 1 Given two sets of real numbers satisfying the second condition of (22): ν1=10.644 8, ν2=7.675 2, ν3=6.890 3, ν4=5.002 9, ν5=3.956 6, ν6=20.279 6; λ1=7.677 69, λ2=6.911 0, λ3=5.260 6, λ4=4.677 1, λ5=3.923 7. Let ξ1=-30, ξ2=26, ξ1'=1, ξ2'=-1, ς1=3.346 7, ς2=14.693 3, ς1'=-1, ς2'=-2. Let the interval J =[-1,9] and a fixed partition of this interval are given: -1 < 0 < 2 < 3 < 4 < 6 < 8 < 9. Define a piecewise constant function w˜ on J by

w ˜ ( x ) = { 0.045   5 ,     x [ - 1,0 ) ,         0 ,         x [ 0,2 ] ,           4 ,         x ( 2,3 ) ,         0 ,        x [ 3,4 ] ,         2 ,        x ( 4,6 ) ,         0 ,        x [ 6,8 ] , 3.718   0 ,   x ( 8,9 ] .

Then, by Algorithm 1, it can be concluded that the reconstructed SLPs (9), (3) are:

{ - ( p ˜ f ' ) ' + q ˜ f = ν w ˜ f ,   o n   J = [ - 1,9 ] , ( ν - 30 ) f ( - 1 ) + ( - ν + 26 ) ( p ˜ f ' ) ( - 1 ) = 0 , ( - ν + 3.3467 ) f ( 9 ) + ( - 2 ν + 14.6933 ) ( p ˜ f ' ) ( 9 ) = 0 ,

where p˜ and q˜ are piecewise constant functions defined on J=[-1,9], and can be given as

p ˜ ( x ) = {        ,         x [ - 1,0 ] , 0.326   4 ,    x ( 0,2 ) ,        ,        x [ 2,3 ] , 3.845   0 ,   x ( 3,4 ) ,        ,        x [ 4,6 ] , 8.510   8 ,   x ( 6,8 ) ,        ,        x [ 8,9 ] , q ˜ ( x ) = { - 0.941   1 , x [ - 1,0 ) ,       0 ,           x [ 0,2 ] , 16.414   9 , x ( 2,3 ) ,       0 ,          x [ 3,4 ] , 7.896   0 ,   x ( 4,6 ) ,       0 ,          x [ 6,8 ] , 14.345   8 , x ( 8,9 ] .

It can be seen that the spectrum of the reconstructed SLPs (9), (3) are:

σ ( - 30,26,1 , - 1,3.347,14.693   3 , - 1 , - 2 ) = { 10.644   8,7.675   2,6.890   3,5.002   9,3.956   6,20.279   6 } , σ ( 0,0 , 1 , - 1,3.347,14.693   3 , - 1 , - 2 ) = { 7.676   9,6.911   0,5.260   6,4.677   1,3.923   7 } .

Example 2 Given two sets of numbers satisfying the fourth condition of property (22): ν1=19.963 7, ν2=12.883 9, ν3=-1.538 9, ν4=-9.964 0, ν5=5.309 9+3.4331i, ν6=5.309 9-3.433 1i; λ1=19.975 9, λ2=13.875 7, λ3= 4.197 2, λ4=-2.146 3, λ5=-9.977 3. Let ξ1=3, ξ2=14, ξ1'=1, ξ2' =-2, ς1= 26.157 2, ς2= 6.039 3, ς1'=-2, ς2'=-1. Let the interval J =[-3,6] be given, and we fix the partition of this interval as: -3 < -2 < 0 < 1 < 2 < 3 < 5 < 6. Define a piecewise constant function w˜ on J by

w ˜ ( x ) = { 0.034   5 ,      x [ - 3 , - 2 ) ,         0 ,          x [ - 2,0 ] ,           2 ,          x ( 0,1 ) ,         0 ,          x [ 1,2 ] ,         3 ,          x ( 2,3 ) ,         0 ,          x [ 3,5 ] , 0.554   2 ,     x ( 5,6 ] .

Then, by Algorithm 1, it can be concluded that the reconstructed SLPs (9), (3) is:

{ - ( p ˜ f ' ) ' + q ˜ f = ν w ˜ f ,   o n   J = [ - 3,6 ] , ( ν + 3 ) f ( - 3 ) + ( - 2 ν + 14 ) ( p ˜ f ' ) ( - 3 ) = 0 , ( - 2 ν + 26.152   7 ) f ( 6 ) + ( - ν + 6.039   3 ) ( p ˜ f ' ) ( 6 ) = 0 ,

where p˜ and q˜ are piecewise constant functions defined on J=[-3,6], and can be given as

p ˜ ( x ) = {        ,         x [ - 3 , - 2 ] ,   3.970   4 ,   x ( - 2,0 ) ,        ,         x [ 0,1 ] , 14.727   1 , x ( 1,2 ) ,        ,         x [ 2,3 ] , 16.610   0 , x ( 3,5 ) ,        ,        x [ 5,6 ] , q ˜ ( x ) = { - 2.312   2 ,    x [ - 3 , - 2 ) ,          0 ,          x [ - 2,0 ] , - 13.788   1 , x ( 0,1 ) ,          0 ,          x [ 1,2 ] , - 3.298   1 ,    x ( 2,3 ) ,          0 ,          x [ 3,5 ] , - 7.051   5 ,    x ( 5,6 ] .

That is the spectrum of the reconstructed SLPs (9), (3) are:

σ ( 3,14,1 , - 2,26.157   2,6.039   3 , - 2 , - 1 ) =   { 19.963   7,12.883   9 , - 1.538   9 , - 9.964   0,5.309   9 ± 3.4331 i } , σ ( 3,14,1 , - 2,0 , 0 , - 2 , - 1 ) =   { 19.975   9,13.875   7,4.197   2 , - 2.146   3 , - 9.977   3 } .

References

  1. Zhang L, Ao J J. On a class of inverse Sturm-Liouville problems with eigenparameter-dependent boundary conditions[J]. Applied Mathematics and Computation, 2019, 362: 124553. [CrossRef] [MathSciNet] [Google Scholar]
  2. Zhang L, Ao J J. Inverse spectral problem for Sturm-Liouville operator with coupled eigenparameter-dependent boundary conditions of Atkinson type[J]. Inverse Problems in Science and Engineering, 2019, 27(12): 1689-1702. [Google Scholar]
  3. Volkmer H. Eigenvalue problems of Atkinson, Feller and Krein, and their mutual relationship[J]. Electronic Journal of Differential Equations, 2005, 2005(48):15-24 . [Google Scholar]
  4. Kong Q, Volkmer H, Zettl A. Matrix representations of Sturm-Liouville problems with finite spectrum[J]. Results in Mathematics, 2009, 54(1):103-116. [CrossRef] [MathSciNet] [Google Scholar]
  5. Atkinson F V. Discrete and Continuous Boundary Problems[M]. New York: Academic Press, 1964. [Google Scholar]
  6. Kong Q, Wu H, Zettl A. Sturm-Liouville problems with finite spectrum[J]. Journal of Mathematical Analysis and Applications, 2001, 263(2): 748-762. [CrossRef] [MathSciNet] [Google Scholar]
  7. Ren G J, Zhu H. Jump phenomena of the n-th eigenvalue of discrete Sturm-Liouville problems with application to the continuous case[J]. Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 2023, 153(2): 619-653. [CrossRef] [MathSciNet] [Google Scholar]
  8. Xu S F. An Introduction to Inverse Algebraic Eigenvalue Problems[M]. Beijing: Peking University Press, 1998(Ch). [Google Scholar]
  9. Freiling G, Yurko V A. Inverse Sturm-Liouville Problems and Their Applications[M]. New York: Nova Science Publishers, 2001. [Google Scholar]
  10. Zettl A. Sturm-Liouville Theory[M]. Providence, RI: Amer Math Soc, 2005. [Google Scholar]
  11. Gladwell G M L. Inverse Problems in Vibration[M]. 2nd Ed. Dordrecht: Kluwer Academic Publishers, 2004. [Google Scholar]
  12. Simon B. The classical moment problem as a self-adjoint finite difference operator[J]. Advances in Mathematics, 1998, 137(1): 82-203. [Google Scholar]
  13. Shieh C T. Some inverse problems on Jacobi matrices[J]. Inverse Problems, 2004, 20(2): 589-600. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  14. Bebiano N, da Providência J. Inverse problems for pseudo-Jacobi matrices: Existence and uniqueness results[J]. Inverse Problems, 2011, 27(2): 025005. [Google Scholar]
  15. Ferguson W E. The construction of Jacobi and periodic Jacobi matrices with prescribed spectra[J]. Mathematics of Computation, 1980, 35(152): 1203-1220. [CrossRef] [MathSciNet] [Google Scholar]
  16. Hochstadt H. On some inverse problems in matrix theory[J]. Archiv Der Mathematik, 1967, 18(2): 201-207. [CrossRef] [MathSciNet] [Google Scholar]
  17. Mirzaei H. Inverse eigenvalue problems for pseudo-symmetric Jacobi matrices with two spectra[J]. Linear and Multilinear Algebra, 2017:1322032. [Google Scholar]
  18. Su Q F. Inverse spectral problem for pseudo-Jacobi matrices with partial spectral data[J]. Journal of Computational and Applied Mathematics, 2016, 297: 1-12. [CrossRef] [MathSciNet] [Google Scholar]
  19. Ambarzumian V. Über eine frage der eigenwerttheorie[J]. Zeitschrift Für Physik, 1929, 53(9): 690-695. [CrossRef] [Google Scholar]
  20. Borg G. Eine umkehrung der Sturm-Liouvilleschen eigenwertaufgabe[J]. Acta Mathematica, 1946, 78(1): 1-96. [Google Scholar]
  21. Levinson N. The inverse Sturm-Liouville problem[J]. Mat Tidskr, 1949, B: 25-30. [Google Scholar]
  22. Gao C H, Du G F. Uniqueness of nonlinear inverse problem for Sturm-Liouville operator with multiple delays[J]. Journal of Nonlinear Mathematical Physics, 2024, 31(1):15. [NASA ADS] [CrossRef] [Google Scholar]
  23. Fu S Z, Xu Z B, Wei G S. The interlacing of spectra between continuous and discontinuous Sturm-Liouville problems and its application to inverse problems[J]. Taiwanese Journal of Mathematics, 2012, 16(2): 651-663. [MathSciNet] [Google Scholar]
  24. Wei Z Y, Wei G S. Inverse spectral problem for non-self-adjoint Dirac operator with boundary and jump conditions dependent on the spectral parameter[J]. Journal of Computational and Applied Mathematics, 2016, 308: 199-214. [Google Scholar]
  25. Yang C F, Yang X P. Inverse Sturm-Liouville problems with discontinuous boundary conditions[J]. Applied Mathematics Letters, 2011, 74: 1-6. [Google Scholar]
  26. Fulton C T, Pruess S. Numerical methods for a singular eigenvalue problem with eigenparameter in the boundary conditions[J]. Journal of Mathematical Analysis and Applications, 1979, 71(2): 431-462. [CrossRef] [MathSciNet] [Google Scholar]
  27. Walter J. Regular eigenvalue problems with eigenvalue parameter in the boundary condition[J]. Mathematische Zeitschrift, 1973, 133(4): 301-312. [CrossRef] [MathSciNet] [Google Scholar]
  28. Binding P A, Browne P J, Watson B A. Sturm-Liouville problems with boundary conditions rationally dependent on the eigenparameter, II[J]. Journal of Computational and Applied Mathematics, 2002, 148(1): 147-168. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  29. Binding P A, Browne P J, Watson B A. Inverse spectral problems for Sturm-Liouville equations with eigenparameter dependent boundary conditions[J]. Journal of the London Mathematical Society, 2000, 62(1): 161-182. [CrossRef] [MathSciNet] [Google Scholar]
  30. Du G F, Gao C H. Inverse problem for Sturm-Liouville operator with complex-valued weight and eigenparameter dependent boundary conditions[J]. Journal of Inverse and Ill-posed Problems, 2024. DOI: https://doi.org/10.1515/jiip-2023-0081. [Google Scholar]
  31. Fulton C T. Two-point boundary value problems with eigenvalue parameter contained in the boundary conditions[J]. Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 1977, 77(3/4): 293-308. [CrossRef] [MathSciNet] [Google Scholar]
  32. Kong Q K, Zettl A. Inverse Sturm-Liouville problems with finite spectrum[J]. Journal of Mathematical Analysis and Applications, 2012, 386(1): 1-9. [Google Scholar]
  33. Volkmer H, Zettl A. Inverse spectral theory for Sturm-Liouville problems with finite spectrum[J]. Proceeding of American Mathematics Society, 2007, 135(4): 1129-1132. [CrossRef] [Google Scholar]
  34. Ao J J, Zhang L. An inverse spectral problem of Sturm-Liouville problem with transmission conditions[J]. Mediterranean Journal of Mathematics, 2020, 17(5): 160. [CrossRef] [Google Scholar]
  35. Cai J M, Zheng Z W. Inverse spectral problems for discontinuous Sturm-Liouville problems of Atkinson type[J]. Applied Mathematics and Computation, 2018, 327: 22-34. [CrossRef] [MathSciNet] [Google Scholar]
  36. Ao J J, Sun J. Matrix representations of Sturm-Liouville problems with eigenparameter-dependent boundary conditions[J]. Linear Algebra and Its Applications, 2013, 438(5): 2359-2365. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.