Issue |
Wuhan Univ. J. Nat. Sci.
Volume 29, Number 6, December 2024
|
|
---|---|---|
Page(s) | 508 - 516 | |
DOI | https://doi.org/10.1051/wujns/2024296508 | |
Published online | 07 January 2025 |
Mathematics
CLC number: O175.3
Inverse Sturm-Liouville Problems with a Class of Non-Self-Adjoint Boundary Conditions Containing the Spectral Parameter
一类具有非自伴谱参数边界条件的 Sturm-Liouville 逆问题
1 College of Sciences, Inner Mongolia University of Technology, Hohhot 010051, Inner Mongolia, China
2 E-Learning Network Center, Ordos Municipal Party Committee School, Ordos 017000, Inner Mongolia, China
† Corresponding author. E-mail: george_ao78@sohu .com
Received:
18
February
2024
The inverse spectral theory of a class of Atkinson-type Sturm-Liouville problems with non-self-adjoint boundary conditions containing the spectral parameter is investigated. Based on the so-called matrix representations of such problems and a special class of inverse matrix eigenvalue problems, some of the coefficient functions of the corresponding Sturm-Liouville problems are constructed by using priori known two sets of complex numbers satisfying certain conditions. To best understand the result, an algorithm and some examples are posted.
摘要
本文研究一类具有非自伴谱参数边界条件的Atkinson类型Sturm-Liouville逆谱问题。利用此类问题的矩阵表示,并基于一类特殊的矩阵逆特征值问题,通过应用已知的两组满足一定条件的复数构造出此类Sturm-Liouville问题的一些系数函数。为了更好地理解主要结论,我们给出了对应算法和一些示例。
Key words: inverse Sturm-Liouville problems / inverse matrix eigenvalue problems / eigenparameter-dependent boundary / Atkinson type / pseudo-Jacobi matrix
关键字 : Sturm-Liouville逆问题 / 逆矩阵特征值问题 / 谱参数边界 / Atkinson类型 / 伪Jacobi矩阵
Cite this article: ZHANG Liang, AO Jijun, LÜ Wenyan. Inverse Sturm-Liouville Problems with a Class of Non-Self-Adjoint Boundary Conditions Containing the Spectral Parameter[J]. Wuhan Univ J of Nat Sci, 2024, 29(6): 508-516.
Biography: ZHANG Liang, male, Ph. D. candidate, research direction: differential operators and their applications. E-mail: 1286366047@qq.com
Foundation item: Supported by the National Natural Science Foundation of China (12261066, 11661059) and the Natural Science Foundation of Inner Mongolia (2021MS01020)
© Wuhan University 2024
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.