Open Access
Issue |
Wuhan Univ. J. Nat. Sci.
Volume 29, Number 6, December 2024
|
|
---|---|---|
Page(s) | 499 - 507 | |
DOI | https://doi.org/10.1051/wujns/2024296499 | |
Published online | 07 January 2025 |
- Aiena P. Fredholm and Local Spectral Theory, with Applications to Multipliers[M]. Netherlands: Springer-Verlag, 2004. [Google Scholar]
- Müller V. Spectral Theory of Linear Operators and Spectral Systems in Banach Algebras[M]. Basel: Birkhäuser, 2003. [CrossRef] [Google Scholar]
- HARTE R E. Invertibility and Singularity for Bounded Linear Operators[M]. New York: Marcel Dekker, 1988. [Google Scholar]
- Duggal B P. B-Browder operators and perturbations[J]. Functional Analysis, Approximation and Computation, 2012, 4(1):71-75. [MathSciNet] [Google Scholar]
- Weyl H. Über beschränkte quadratische formen, deren differenz vollstetig ist[J]. Rendiconti Del Circolo Matematico Di Palermo, 1909, 27(1): 373-392. [CrossRef] [Google Scholar]
- Harte R, Lee W. Another note on Weyl's theorem[J]. Transactions of the American Mathematical Society, 1997, 349(5): 2115-2124. [CrossRef] [MathSciNet] [Google Scholar]
- Rakočević V. Operators obeying a-Weyl's theorem[J]. Rev Roumaine Math Pures Appl, 1989, 34:915-919. [MathSciNet] [Google Scholar]
- Rakočević V. On a class of operators[J]. Mat Vesnik, 1985, 37: 423-426. [MathSciNet] [Google Scholar]
- Aiena P, Peña P. Variations on Weyl's theorem[J]. Journal of Mathematical Analysis and Applications, 2006, 324(1): 566-579. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
- Aiena P, Guillen J R, Peña P. Property (ω) for perturbations of Polaroid operators[J]. Linear Algebra and Its Applications, 2008, 428(8-9): 1791-1802. [Google Scholar]
-
Sun C H, Cao X H, Dai L. Property
and Weyl type theorem[J]. Journal of Mathematical Analysis and Applications, 2010, 363(1): 1-6. [CrossRef] [MathSciNet] [Google Scholar]
- Dai L, Cao X H, Guo Q. Property (ω) and the single-valued extension property[J]. Acta Mathematica Sinica, English Series, 2021, 37(8): 1254-1266. [Google Scholar]
- Cao X H. Weyl spectrum of the products of operators[J]. Journal of the Korean Mathematical Society, 2008, 45(3): 771-780. [Google Scholar]
- Conway J. A Course in Functional Analysis[M]. New York: Springer-Verlag, 1990. [Google Scholar]
- Hilden H M, Wallen L J. Some cyclic and non-cyclic and non-cyclic vectors for certain operators[J]. Indiana University Mathematics Journal, 1974, 23:557-565. [Google Scholar]
- Kitai C. Invariant Closed Sets for Linear Operators[D]. Toronto: University of Toronto, 1982. [Google Scholar]
- Cao X H. Weyl type theorem and hypercyclic operators[J]. Journal of Mathematical Analysis and Applications, 2006, 323(1): 267-274. [Google Scholar]
- Cao X H. Weyl type theorems and hypercyclic operators II[J]. Proceedings of the American Mathematical Society, 2007, 135(6): 1701-1708. [Google Scholar]
- Herrero D A. Limits of hypercyclic and supercyclic operators[J]. Journal of Functional Analysis, 1991, 99(1): 179-190. [CrossRef] [MathSciNet] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.