Open Access
Issue
Wuhan Univ. J. Nat. Sci.
Volume 30, Number 1, February 2025
Page(s) 43 - 48
DOI https://doi.org/10.1051/wujns/2025301043
Published online 12 March 2025
  1. Angenent S B. Monotone recurrence relations, their Birkhoff orbits and topological entropy[J]. Ergodic Theory and Dynamical Systems, 1990, 10(1): 15-41. [CrossRef] [MathSciNet] [Google Scholar]
  2. Bangert V. Mather Sets for Twist Maps and Geodesics on Tori[M]. Wiesbaden: Vieweg+Teubner Verlag, 1988. [MathSciNet] [Google Scholar]
  3. Hall G R. A topological version of a theorem of Mather on twist maps[J]. Ergodic Theory and Dynamical Systems, 1984, 4(4): 585-603. [CrossRef] [MathSciNet] [Google Scholar]
  4. Katok A. Some remarks on Birkhoff and Mather twist map theorems[J]. Ergodic Theory and Dynamical Systems, 1982, 2(2): 185-194. [CrossRef] [MathSciNet] [Google Scholar]
  5. Mather J N. Existence of quasi-periodic orbits for twist homeomorphisms of the annulus[J]. Topology, 1982, 21(4): 457-467. [CrossRef] [MathSciNet] [Google Scholar]
  6. Zhou T, Hu W J, Huang Q M, et al. Formula -bounded orbits and Arnold tongues for quasiperiodically forced circle maps[J]. Nonlinearity, 2022, 35(3): 1119-1130. [CrossRef] [MathSciNet] [Google Scholar]
  7. Baesens C, MacKay R S, Qin W X, et al. Depinning transition of travelling waves for particle chains[J]. Nonlinearity, 2023, 36(2): 878-901. [CrossRef] [MathSciNet] [Google Scholar]
  8. Guo L, Miao X Q, Wang Y N, et al. Positive topological entropy for monotone recurrence relations[J]. Ergodic Theory and Dynamical Systems, 2015, 35(6): 1880-1901. [CrossRef] [MathSciNet] [Google Scholar]
  9. Wang K, Miao X Q, Wang Y N, et al. Continuity of depinning force[J]. Advances in Mathematics, 2018, 335: 276-306. [CrossRef] [MathSciNet] [Google Scholar]
  10. Zhou T, Huang Q M. Rotation numbers and bounded deviations for quasi-periodic monotone recurrence relations[J]. Journal of Mathematical Analysis and Applications, 2024, 537(2): 128396. [CrossRef] [Google Scholar]
  11. Mramor B, Rink B. Ghost circles in lattice Aubry-Mather theory[J]. Journal of Differential Equations, 2012, 252(4): 3163-3208. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  12. Mramor B, Rink B W. On the destruction of minimal foliations[J]. Proceedings of the London Mathematical Society, 2014, 108(3): 704-737. [CrossRef] [MathSciNet] [Google Scholar]
  13. Zhou T, Qin W X. Pseudo solutions, rotation sets, and shadowing rotations for monotone recurrence relations[J]. Mathematische Zeitschrift, 2021, 297(3): 1673-1692. [CrossRef] [MathSciNet] [Google Scholar]
  14. Qin W X, Shen B N, Sun Y L, et al. Zero entropy and stable rotation sets for monotone recurrence relations[J]. Ergodic Theory and Dynamical Systems, 2023, 43(5):1737-1759. [CrossRef] [MathSciNet] [Google Scholar]
  15. Zhou T. Periodic generalized Birkhoff solutions and Farey intervals for monotone recurrence relations[J]. J Dyn Differ Equ, 2024: 10364-9. [Google Scholar]
  16. Katok A, Hasselblatt B. Introduction to the Modern Theory of Dynamical Systems[M]. Cambridge: Cambridge University Press, 1995. [CrossRef] [Google Scholar]
  17. Walters P. An Introduction to Ergodic Theory[M]. New York: Springer-Verlag, 1982. [CrossRef] [Google Scholar]
  18. Aubry S, Le Daeron P Y. The discrete Frenkel-Kontorova model and its extensions[J]. Physica D, 1983, 8: 381-422. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.