Open Access
Issue |
Wuhan Univ. J. Nat. Sci.
Volume 30, Number 1, February 2025
|
|
---|---|---|
Page(s) | 32 - 42 | |
DOI | https://doi.org/10.1051/wujns/2025301032 | |
Published online | 12 March 2025 |
- Bose N K. Applied Multidimensional Systems Theory[M]. New York: Van Nostrand Reinhold, 1982. [Google Scholar]
- Dudgeon D E, Mersereau R M. Multidimensional Digital Signal Processing[M]. Englewood Cliffs: Prentice Hall, 1984. [Google Scholar]
- Bose N K. Digital Filters: Theory and Applications[M]. Amsterdam: Elsevier Science, 1985. [Google Scholar]
- Bose N K, Liang P. Neural Network Fundamentals with Graphs, Algorithms and Applications[M]. New York: McGraw-Hill, 1996. [Google Scholar]
- Bose N K, Buchberger B, Guiver J. Multidimensional Systems Theory and Applications[M]. Dordrecht: Kluwer, 2003. [Google Scholar]
- Roesser R. A discrete state-space model for linear image processing[J]. IEEE Transactions on Automatic Control, 1975, 20(1): 1-10. [Google Scholar]
- Fornasini E, Marchesini G. State-space realization theory of two-dimensional filters[J]. IEEE Transactions on Automatic Control, 1976, 21(4): 484-492. [CrossRef] [MathSciNet] [Google Scholar]
- Youla D, Gnavi G. Notes on n-dimensional system theory[J]. IEEE Transactions on Circuits and Systems, 1979, 26(2): 105-111. [CrossRef] [MathSciNet] [Google Scholar]
- McInerney S J. Representations and Transformations for Multi-Dimensional Systems[D]. Loughborough: Loughborough University, 1999. [Google Scholar]
- Liu J W, Wu T, Li D M. Smith form of triangular multivariate polynomial matrix[J]. Journal of Systems Science and Complexity, 2023, 36(1): 151-164. [CrossRef] [MathSciNet] [Google Scholar]
- Boudellioua M S. Further results on the equivalence to Smith form of multivariate polynomial matrices[J]. Control and Cybernetics, 2013, 42(2): 543-551. [MathSciNet] [Google Scholar]
- Frost M G, Boudellioua M S. Some further results concerning matrices with elements in a polynomial ring[J]. International Journal of Control, 1986, 43(5): 1543-1555. [CrossRef] [MathSciNet] [Google Scholar]
- Lin Z P, Boudellioua M S, Xu L. On the equivalence and factorization of multivariate polynomial matrices[C]//2006 IEEE International Symposium on Circuits and Systems (ISCAS). New York: IEEE, 2006: 4911-4914. [Google Scholar]
- Li D M, Liu J W, Chu D L. The Smith form of a multivariate polynomial matrix over an arbitrary coefficient field[J]. Linear and Multilinear Algebra, 2022, 70(2): 366-379. [CrossRef] [MathSciNet] [Google Scholar]
- Li D M, Liu J W, Zheng L C. On the equivalence of multivariate polynomial matrices[J]. Multidimensional Systems and Signal Processing, 2017, 28(1): 225-235. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
- Li D, Liang R, Liu J. Some further results on the Smith form of bivariate polynomial matrices[J]. Journal of System Science and Mathematical Science, 2019, 39(12): 1983-1997. [Google Scholar]
- Lu D, Wang D K, Xiao F H. New remarks on the factorization and equivalence problems for a class of multivariate polynomial matrices[J]. Journal of Symbolic Computation, 2023, 115: 266-284. [CrossRef] [MathSciNet] [Google Scholar]
- Zheng X P, Lu D, Wang D K, et al. New results on the equivalence of bivariate polynomial matrices[J]. Journal of Systems Science and Complexity, 2023, 36(1): 77-95. [CrossRef] [MathSciNet] [Google Scholar]
- Lu D, Wang D K, Xiao F H, et al. Equivalence and reduction of bivariate polynomial matrices to their Smith forms[J]. Journal of Symbolic Computation, 2023, 118: 1-16. [CrossRef] [MathSciNet] [Google Scholar]
- Lu D, Wang D K, Xiao F H. Further results on the factorization and equivalence for multivariate polynomial matrices[C]//Proceedings of the 45th International Symposium on Symbolic and Algebraic Computation. New York: ACM, 2020: 328-335. [Google Scholar]
- Zerz E. Primeness of multivariate polynomial matrices[J]. Systems & Control Letters, 1996, 29(3): 139-145. [CrossRef] [MathSciNet] [Google Scholar]
- Pugh A C. Matrix pencil equivalents of a general 2-D polynomial matrix[J]. International Journal of Control, 1998, 71(6): 1027-1050. [CrossRef] [MathSciNet] [Google Scholar]
- Pugh A C, McInerney S J, El-Nabrawy E M O. Zero structures of n-D systems[J]. International Journal of Control, 2005, 78(4): 277-285. [CrossRef] [MathSciNet] [Google Scholar]
- Boudellioua M S. Reduction of linear functional systems using Fuhrmann's equivalence[J]. Sultan Qaboos University Journal for Science, 2016, 21(1): 64-68 [CrossRef] [Google Scholar]
- Wang M S, Feng D G. On Lin-Bose problem[J]. Linear Algebra and Its Applications, 2004, 390: 279-285. [CrossRef] [MathSciNet] [Google Scholar]
- Mingsheng W, Kwong C P. On multivariate polynomial matrix factorization problems[J]. Mathematics of Control, Signals and Systems, 2005, 17(4): 297-311. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
- Frost M G, Storey C. Equivalence of matrices over R[s, z]: A counter-example[J]. International Journal of Control, 1981, 34(6): 1225-1226. [CrossRef] [MathSciNet] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.