Open Access
Issue
Wuhan Univ. J. Nat. Sci.
Volume 29, Number 3, June 2024
Page(s) 263 - 272
DOI https://doi.org/10.1051/wujns/2024293263
Published online 03 July 2024
  1. Noether A E. Invariante variationsprobleme [J]. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, 1918, KI(2): 235-257. [Google Scholar]
  2. Mei F X. Applications of Lie Groups and Lie Algebras to Constrained Mechanical Systems [M]. Beijing: Science Press, 1999(Ch). [Google Scholar]
  3. Zhao Y Y, Mei F X. Symmetries and Invariants of Mechanical Systems [M]. Beijing: Science Press, 1999(Ch). [Google Scholar]
  4. Mei F X. Symmetries and Conserved Quantities of Constrained Mechanical Systems [M]. Beijing: Beijing Institute of Technology Press, 2004(Ch). [Google Scholar]
  5. Mei F X. Analytical Mechanics II [M]. Beijing: Beijing Institute of Technology Press, 2013(Ch). [Google Scholar]
  6. Mei F X. Advances in the symmetries and conserved quantities of classical constrained systems [J]. Advances in Mechanics, 2009, 39(1): 37-43(Ch). [Google Scholar]
  7. Mei F X, Shi R C, Zhang Y F, et al. Birkhoff System Dynamics [M]. Beijing: Beijing Institute of Technology Press, 1996(Ch). [Google Scholar]
  8. Santilli R M. Foundations of Theoretical Mechanics II[M]. Berlin: Springer-Verlag, 1983. [Google Scholar]
  9. Mei F X, Zhang Y F, He G, et al. Fundamental framework of generalized Birkhoff system dynamics [J]. Transactions of Beijing Institute of Technology, 2007, 27(12): 1035-1038(Ch). [MathSciNet] [Google Scholar]
  10. Mei F X. The Noether's theory of Birkhoffian systems [J]. Science in China, Serie A, 1993, 36(12): 1456-1467. [Google Scholar]
  11. Mei F X. Generalized Birkhoff System Dynamics [M]. Beijing: Science Press, 2013(Ch). [Google Scholar]
  12. Zhang Y. Birkhoff symmetries and conserved quantities of generalized Birkhoffian systems [J]. Acta Physica Sinica, 2009, 58(11): 7436-7439(Ch). [CrossRef] [MathSciNet] [Google Scholar]
  13. Song C J, Zhang Y. Conserved quantities and adiabatic invariants for fractional generalized Birkhoffian systems [J]. International Journal of Non-Linear Mechanics, 2017, 90: 32-38. [NASA ADS] [CrossRef] [Google Scholar]
  14. Zhou Y, Zhang Y. Noether symmetries for fractional generalized Birkhoffian systems in terms of classical and combined Caputo derivatives [J]. Acta Mechanica, 2020, 231(7): 3017-3029. [CrossRef] [MathSciNet] [Google Scholar]
  15. Hilger S. Ein Maßkettenkalkül Mit Anwendung Auf Zentrumsmannigfaltigkeiten [D]. Würzburg: Universität Würzburg, 1988. [Google Scholar]
  16. Bohner M, Peterson A C. Dynamic Equations on Time Scales: An Introduction with Applications [M]. Boston: Birkhäuser, 2001. [Google Scholar]
  17. Bohner M, Georgiev S G. Multivariable Dynamic Calculus on Time Scales[M]. Cham: Springer International Publishing, 2016. [CrossRef] [Google Scholar]
  18. Bohner M. Calculus of variations on time scales [J]. Dynamic Systems and Applications, 2004, 13(3-4): 339-349. [MathSciNet] [Google Scholar]
  19. Zhai X H, Zhang Y. Noether theorem for non-conservative systems with time delay on time scales [J]. Communications in Nonlinear Science and Numerical Simulation, 2017, 52:32-43. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  20. Cai P P, Fu J L, Guo Y X. Noether symmetries of the nonconservative and nonholonomic systems on time scales [J]. Science China Physics, Mechanics and Astronomy, 2013, 56(5): 1017-1028. [CrossRef] [Google Scholar]
  21. Song C J, Zhang Y. Noether theorem for Birkhoffian systems on time scales [J]. Journal of Mathematical Physics, 2015, 56(10): 102701. [CrossRef] [MathSciNet] [Google Scholar]
  22. Zhang Y. Noether symmetries and conserved quantities of constrained Birkhoffian systems on time scales [J]. Journal of Dynamics and Control, 2019, 17(5): 482-486(Ch). [Google Scholar]
  23. Song C J. Quasi-symmetry and conserved quantity for generalized Birkhoffian system on time scales [J]. Journal of Suzhou University of Science and Technology (Natural Science), 2020, 37(1): 12-17(Ch). [Google Scholar]
  24. Song C J. The Study on Symmetries and Their Perturbation Theories for Constrained Mechanical Systems on Time Scales [D]. Nanjing: Nanjing University of Science and Technology, 2017(Ch). [Google Scholar]
  25. Song C J, Zhang Y. Perturbation to symmetry and adiabatic invariant for Lagrangian system on time scale [J]. Journal of Nanjing University of Science and Technology, 2017, 41(2): 181-185(Ch). [Google Scholar]
  26. Song C J. Perturbation to Noether quasi-symmetry and adiabatic invariants for nonholonomic systems on time scales [J]. Journal of Beijing Institute of Technology, 2019, 28(3): 469-476. [Google Scholar]
  27. Jin S X, Li Y M. Perturbation and adiabatic invariants of Noether symmetry for generalized Chaplygin systems on time scales [J]. Chinese Quarterly of Mechanics, 2021, 42(3): 550-559(Ch). [Google Scholar]
  28. Zhang Y. Perturbation to Noether symmetries and adiabatic invariants for nonconservative dynamic systems [J]. Acta Physica Sinica, 2013, 62(16): 164501. [CrossRef] [Google Scholar]
  29. Anerot B, Cresson J, Belgacem K H, et al. Noether's-type theorems on time scales [J]. Journal of Mathematical Physics, 2020, 61(11): 113502. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  30. Bartosiewicz Z, Martins N, Torres D F M. The second Euler-Lagrange equation of variational calculus on time scales [J]. European Journal of Control, 2011, 17(1): 9-18. [CrossRef] [MathSciNet] [Google Scholar]
  31. Sarlet W, Cantrijn F. Generalizations of Noether's theorem in classical mechanics [J]. Siam Review, 1981, 23(4): 467-494. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.