Open Access
Issue
Wuhan Univ. J. Nat. Sci.
Volume 29, Number 3, June 2024
Page(s) 273 - 283
DOI https://doi.org/10.1051/wujns/2024293273
Published online 03 July 2024
  1. Mei F X, Wu H B, Li Y M. A Brief History of Analytical Mechanics[M]. Beijing: Science Press, 2019(Ch). [Google Scholar]
  2. Chen B. Analytical Dynamics[M]. 2nd Ed. Beijing: Peking University Press, 2012(Ch). [Google Scholar]
  3. Mei F X. Analytical Mechanics Ⅱ[M]. Beijing: Beijing Institute of Technology Press, 2013(Ch). [Google Scholar]
  4. Udwadia F E, Kalaba R E. Analytical Dynamics — A New Approach[M]. New York: Cambridge University Press, 2008. [Google Scholar]
  5. Попов Е П. Operating Robot Dynamics and Algorithm[M]. Yu L J, Chen X J trans. Beijing: Mechanical Industry Press, 1983(Ch). [Google Scholar]
  6. Liu Y Z, Pan Z K, Ge X S. Dynamics of Multibody Systems[M]. 2nd Ed. Beijing: Higher Education Press, 2014(Ch). [Google Scholar]
  7. Liu Y Z. Dynamic modeling of multi-body system based on Gauss's principle[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(6): 940-945(Ch). [Google Scholar]
  8. Liu Y Z. Dynamical modeling of a net system of rods based on Gauss's principle[J]. Journal of Dynamics and Control, 2018, 16(4): 289-294(Ch). [Google Scholar]
  9. Yao W L, Liu Y P, Yang L S. Dynamic modeling of nonideal system based on Gauss's principle[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(4): 945-953(Ch). [Google Scholar]
  10. Yao W L, Yang L S, Song K W, et al. Optimization method for dynamics of non-holonomic system based on Gauss's principle[J]. Acta Mechanica Sinica, 2020, 36(5): 1133-1141. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  11. Yao W L, Yang L S, Guo M M. Gauss optimization method for the dynamics of unilateral contact of rigid multibody systems[J]. Acta Mechanica Sinica, 2021, 37(3): 494-506. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  12. Orsino R M M. Extended constraint enforcement formulations for finite-DOF systems based on Gauss's principle of least constraint[J]. Nonlinear Dynamics, 2020, 101(4): 2577-2597. [CrossRef] [Google Scholar]
  13. Yao W L, Dai B Q. Gauss principle of least constraint in generalized coordinates and its generalization[J]. Mechanics in Engineering, 2014, 36(6): 779-782, 785(Ch). [Google Scholar]
  14. Yang L S, Yao W L, Xue S F. Application of particle swarm optimization on the multi-body system dynamics with singular positions[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2021, 57(5): 795-803(Ch). [Google Scholar]
  15. Xue Y, Liu Y Z, Chen L Q. On analytical mechanics for a super-thin elastic rod[J]. Chinese Journal of Theoretical and Applied Mechanics, 2005, 37(4): 485-493(Ch). [Google Scholar]
  16. Xue Y, Weng D W. Gauss principle for a super-thin elastic rod dynamics[J]. Acta Physica Sinica, 2009, 58(1): 34-39(Ch). [Google Scholar]
  17. Liu Y Z, Xue Y. Dynamical model of Cosserat elastic rod based on Gauss principle[J]. Acta Physica Sinica, 2015, 64(4): 044601(Ch). [CrossRef] [Google Scholar]
  18. Xue Y, Qu J L, Chen L Q. Gauss principle of least constraint for Cosserat growing elastic rod dynamics[J]. Applied Mathematics and Mechanics, 2015, 36(7): 700-709(Ch). [Google Scholar]
  19. Зегжда СА, Солтаханов ШХ, Юшков МП. Equations of Motion for Nonholonomic Systems and Variational Principles of Mechanics: A New Class of Control Problems[M]. Mei F X trans. Beijing: Beijing Institute of Technology Press, 2007(Ch). [Google Scholar]
  20. Li B L, Song F P. On Gauss's principle of least constraint for impulsive motion[J]. Journal of Hunan University, 1995, 22(4): 23-28(Ch). [Google Scholar]
  21. Ivanov A P. On the variational formulation of the dynamics of systems with friction[J]. Regular and Chaotic Dynamics, 2014, 19(1): 100-115. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  22. Wang L S, Pao Y H. Jourdain's variational equation and Appell's equation of motion for nonholonomic dynamical systems[J]. American Journal of Physics, 2003, 71(1): 72-82. [NASA ADS] [CrossRef] [Google Scholar]
  23. Yan C C. Hamilton's principle and Schrodinger's equation derived from Gauss's principle of least squares[J]. Foundations of Physics Letters, 2000, 13(1): 79-87. [CrossRef] [MathSciNet] [Google Scholar]
  24. Zegzhda S A, Soltakhanov S K. Application of the generalized Gaussian principle to the problem of damping vibrations of mechanical systems[J]. Journal of Computer and Systems Sciences International, 2010, 49(2): 186-191. [CrossRef] [MathSciNet] [Google Scholar]
  25. Lewis A D. The geometry of the Gibbs-Appell equations and Gauss's principle of least constraint[J]. Reports on Mathematical Physics, 1996, 38(1): 11-28. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  26. Kalaba R E, Natsuyama H H, Udwadia F E. An extension Gauss's principle of least constraint[J]. International Journal of General Systems, 2004, 33(1): 63-69. [CrossRef] [MathSciNet] [Google Scholar]
  27. Zhang Y, Chen X Y. The generalized Gauss principle for mechanical system with variable mass and its generalization to higher order nonholonomic systems[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(10): 2883-2891(Ch). [Google Scholar]
  28. Zhang Y, Song C J, Zhai X H. Generalized Gauss principle of least compulsion for variable acceleration dynamical systems[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(5): 1174-1180(Ch). [Google Scholar]
  29. Mei F X. Analytical Mechanical Special Problem[M]. Beijing: Beijing Institute of Technology Press, 1988(Ch). [Google Scholar]
  30. Markeyev A P. Approximate equations of rotational motion of a rigid body carrying a movable point mass[J]. Journal of Applied Mathematics and Mechanics, 2013, 77(2): 137-144. [CrossRef] [MathSciNet] [Google Scholar]
  31. Prioroc C L, Mikkola S. Simple algorithms for relative motion of satellites[J]. New Astronomy, 2015, 34: 41-46. [NASA ADS] [CrossRef] [Google Scholar]
  32. Vepa R. Feedback tracking control of optimal reference trajectories for spacecraft relative motion[J]. Advances in Space Research, 2022, 69(9): 3478-3489. [NASA ADS] [CrossRef] [Google Scholar]
  33. Burnett E R, Schaub H. Geometric perspectives on fundamental solutions in the linearized satellite relative motion problem[J]. Acta Astronautica, 2022, 190: 48-61. [NASA ADS] [CrossRef] [Google Scholar]
  34. Whittaker E T. A Treatise on the Analytical Dynamics of Particles and Rigid Bodies[M]. Fourth Ed. Cambridge: Cambridge University Press, 1952. [Google Scholar]
  35. Lure A I. Analytical Mechanics[M]. Moscow: GIFML, 1961 (in Russian). [Google Scholar]
  36. Mei F X, Wu H B. Dynamics of Constrained Mechanical Systems[M]. Beijing: Beijing Institute of Technology Press, 2009. [Google Scholar]
  37. Liu G L, Qiao Y F, Zhang J F, et al. Relative motion dynamics of variable mass non-holonomic mechanical systems[J]. Acta Mechanica Sinica, 1989, 21(6): 742-748(Ch). [Google Scholar]
  38. Chen X W, Luo S K. Integration method for the dynamics equation of relative motion of variable mass nonlinear nonholonomic system[J]. Applied Mathematics and Mechanics, 1998, 19(5): 479-488. [Google Scholar]
  39. Luo S K. Integral theory for the dynamics of nonlinear nonholonomic system in noninertial reference frames[J]. Applied Mathematics and Mechanics, 1993, 14(10): 907-918. [Google Scholar]
  40. Zhang X W. The universal forms of the dynamic equations of holonomic mechanical system in relative motion[J]. Acta Physica Sinica, 2006, 55(6): 2669-2675(Ch). [Google Scholar]
  41. Xie Y L, Jia L Q, Luo S K. Special Lie symmetry and Hojman conserved quantity of Appell equations in a dynamical system of relative motion[J]. Chinese Physics B, 2011, 20(1): 010203. [CrossRef] [MathSciNet] [Google Scholar]
  42. Xie Y L, Jia L Q, Yang X F. Lie symmetry and Hojman conserved quantity of Nielsen equation in a dynamical system of the relative motion[J]. Acta Physica Sinica, 2011, 60(3): 030201(Ch). [Google Scholar]
  43. Mei F X, Wu H B. Lagrange symmetry for a dynamical system of relative motion[J]. Acta Physica Sinica, 2009, 58(9): 5919-5922(Ch). [CrossRef] [MathSciNet] [Google Scholar]
  44. Zhang Y, Mei F X. Algebraic structure of the dynamical equations of holonomic mechanical system in relative motion[J]. Journal of Beijing Intitute of Technology (English Edition), 1998, 7(1): 12-18. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.