Open Access
Issue |
Wuhan Univ. J. Nat. Sci.
Volume 30, Number 1, February 2025
|
|
---|---|---|
Page(s) | 57 - 59 | |
DOI | https://doi.org/10.1051/wujns/2025301057 | |
Published online | 12 March 2025 |
- Gallian J. A dynamic survey of graph labeling[EB/OL]. [2024-02-10]. https://www.combinatorics.org/files/Surveys/ds6/ds6v22-2019.pdf. [Google Scholar]
- Fu H L, Huang K C. On prime labellings[J]. Discrete Mathematics, 1994, 127(1/2/3): 181-186. [CrossRef] [MathSciNet] [Google Scholar]
- Pikhurko O. Trees are almost prime[J]. Discrete Mathematics, 2007, 307(11/12): 1455-1462. [CrossRef] [MathSciNet] [Google Scholar]
- Robertson L, Small B. On Newman's conjecture and prime trees[J]. Integers, 2009, 9(2): 117-128. [CrossRef] [MathSciNet] [Google Scholar]
- Haxell P, Pikhurko O, Taraz A. Primality of trees[J]. Journal of Combinatorics, 2011, 2(4): 481-500. [CrossRef] [MathSciNet] [Google Scholar]
- Pomerance C, Selfridge J L. Proof of D. J. Newman's coprime mapping conjecture[J]. Mathematika, 1980, 27(1): 69-83. [CrossRef] [MathSciNet] [Google Scholar]
- Rosser J B, Schoenfeld L. Approximate formulas for some functions of prime numbers[J]. Illinois Journal of Mathematics, 1962, 6(1): 64-94. [CrossRef] [MathSciNet] [Google Scholar]
- Kang D, Kelly T, Kühn D, et al. A proof of the Erdős-Faber-Lovász conjecture[J]. Annals of Mathematics, 2023, 198(2): 537-618. [CrossRef] [MathSciNet] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.