Open Access
Issue
Wuhan Univ. J. Nat. Sci.
Volume 30, Number 1, February 2025
Page(s) 60 - 68
DOI https://doi.org/10.1051/wujns/2025301060
Published online 12 March 2025
  1. Djordjević D S. Operators obeying a-Weyl's theorem[J]. Publicationes Mathematicae Debrecen, 1999, 55(3/4): 283-298. [CrossRef] [MathSciNet] [Google Scholar]
  2. Cao X H, Guo M Z, Meng B. Weyl spectra and Weyl's theorem[J]. Journal of Mathematical Analysis and Applications, 2003, 288(2): 758-767. [CrossRef] [MathSciNet] [Google Scholar]
  3. Gupta A, Kumar A. Properties (BR) and (BgR) for bounded linear operators[J]. Rendiconti Del Circolo Matematico Di Palermo Series 2, 2020, 69(2): 601-611. [CrossRef] [MathSciNet] [Google Scholar]
  4. Sun C H, Wang N, Cao X H. Topological uniform descent and judgement of a-Weyl's theorem [J]. Wuhan University Journal of Natural Sciences, 2023, 28(5): 392-398. [CrossRef] [EDP Sciences] [Google Scholar]
  5. Aiena P, Triolo S. Weyl-type theorems on Banach spaces under compact perturbations[J]. Mediterranean Journal of Mathematics, 2018, 15(3): 126. [CrossRef] [Google Scholar]
  6. Wu X F, Huang J J, Chen A. Weylness of 2 × 2 operator matrices[J]. Mathematische Nachrichten, 2018, 291(1): 187-203. [CrossRef] [MathSciNet] [Google Scholar]
  7. Dong J, Cao X H, Dai L. On weyl's theorem for functions of operators[J]. Acta Mathematica Sinica, English Series, 2019, 35(8): 1367-1376. [CrossRef] [MathSciNet] [Google Scholar]
  8. Dai L, Yi J L. Property (ω) and Hypercyclic Property for Operators[J]. Wuhan University Journal of Natural Sciences, 2024, 29(6): 499-507. [CrossRef] [EDP Sciences] [Google Scholar]
  9. Zhu S, Li C G, Zhou T T. Weyl type theorems for functions of operators [J]. Glasgow Mathematical Journal, 2012, 54(3): 493-505. [CrossRef] [MathSciNet] [Google Scholar]
  10. Berkani M, Kachad M. New Browder and weyl type theorems[J]. Bulletin of the Korean Mathematical Society, 2015, 52(2): 439-452. [CrossRef] [MathSciNet] [Google Scholar]
  11. Yang L L, Cao X H. Property (R) for functions of operators and its perturbations[J]. Mediterranean Journal of Mathematics, 2022, 19(1): 25. [CrossRef] [Google Scholar]
  12. Ren Y X, Jiang L N, Kong Y Y. Property Formula and topological uniform descent [J]. Bulletin of the Belgian Mathematical Society - Simon Stevin, 2022, 29(1): 1-17. [MathSciNet] [Google Scholar]
  13. Grabiner S. Uniform ascent and descent of bounded operators[J]. Journal of the Mathematical Society of Japan, 1982, 34(2): 317-337. [CrossRef] [MathSciNet] [Google Scholar]
  14. Rakočević V. Semi-Browder operators and perturbations[J]. Studia Mathematica, 1997, 122(2): 131-137. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.