Open Access
| Issue |
Wuhan Univ. J. Nat. Sci.
Volume 30, Number 4, August 2025
|
|
|---|---|---|
| Page(s) | 321 - 333 | |
| DOI | https://doi.org/10.1051/wujns/2025304321 | |
| Published online | 12 September 2025 | |
- Liu Z Y, Zhang F X, Sun Z H, et al. Distributed fiber optic sensing signal recognition based on class-incremental learning[J]. Optical Fiber Technology, 2024, 87: 103940. [Google Scholar]
-
Zheng Z Y, Feng H, Sha Z, et al. A hand-crafted
-OTDR event recognition method based on space-temporal graph and morphological object detection[J]. Optics and Lasers in Engineering, 2024, 183: 108513.
[Google Scholar]
- Li X L, Sun Q Z, Wo J H, et al. Hybrid TDM/WDM-based fiber-optic sensor network for perimeter intrusion detection[J]. Journal of Lightwave Technology, 2011, 30(8): 1113-1120. [Google Scholar]
- Zhao S, Zhou R, Luo M M, et al. Distributed fiber optic sensing system for vibration monitoring of 3D printed bridges[J]. Optoelectronics Letters, 2025, 21(1): 28-34. [Google Scholar]
- Zhang Y L. Research on Signal Extraction and Pattern Recognition Method of Distributed Optical Fiber Vibration Sensing System[D]. Changchun: Jilin University, 2021 (Ch). [Google Scholar]
-
Wang M, Sha Z, Feng H, et al.
-OTDR pattern recognition based on LSTM-CNN[J]. Acta Optica Sinica, 2023, 43(5): 19-30 (Ch).
[Google Scholar]
-
Cao X M, Su Y S, Jin Z Y, et al. An open dataset of
-OTDR events with two classification models as baselines[J]. Results in Optics, 2023, 10: 100372.
[Google Scholar]
- Ma D Y, Liu X Y, Li Y Z, et al. Application progress of machine learning technology in improving the performance of distributed fiber optic sensing[J]. Progress in Laser and Optoelectronics, 2025, 62(3): 25-43 (Ch). [Google Scholar]
- Wang M S, Huang B, He C P, et al. A fault diagnosis model for complex industrial process based on improved TCN and 1D CNN[J]. Wuhan University Journal of Natural Sciences, 2022, 27(6): 453-464. [Google Scholar]
- Zhang Y, Zhao W A, Dong L L, et al. Intrusion event identification approach for distributed vibration sensing using multimodal fusion[J]. IEEE Sensors Journal, 2024, 24(22): 37114-37124. [Google Scholar]
- Liu J W, Wang Y F, Luo X L. Research Progress on Deep Memory Networks[J]. Chinese Journal of Computer Science, 2021, 44(8): 1549-1589 (Ch). [Google Scholar]
- Zou Y H, Zhang Y F, Zhao X D. Self-supervised time series classification based on LSTM and contrastive transformer[J]. Wuhan University Journal of Natural Sciences, 2022, 27(6): 521-530. [Google Scholar]
- Ma X R, Mo J Q, Zhang J W, et al. Optical fiber vibration signal recognition based on the fusion of multi-scale features[J]. Sensors, 2022, 22(16): 6012. [Google Scholar]
- Jin X B, Liu K, Jiang J F, et al. Multi-dimensional distributed optical fiber vibration sensing pattern recognition based on convolutional neural network[J]. Acta Optica Sinica, 2024, 44(1): 384-394(Ch). [Google Scholar]
- Zhu C Y, Yang K X, Yang Q M, et al. A comprehensive bibliometric analysis of signal processing and pattern recognition based on distributed optical fiber[J]. Measurement, 2023, 206: 112340. [Google Scholar]
-
Yang N C. Research on Vibration Event Detection and Identification Technology Based on
-OTDR[D]. Zhengzhou: Information Engineering University, 2023(Ch).
[Google Scholar]
- Xia Q F, Xu Y E, Li M Y, et al. A review of attention mechanisms in reinforcement learning[J]. Computer Science and Exploration, 2024, 18 (6): 1457-1475 (Ch). [Google Scholar]
- Zeng Y M, Zhang J W, Zhong Y Z, et al. STNet: A time-frequency analysis-based intrusion detection network for distributed optical fiber acoustic sensing systems[J]. Sensors, 2024, 24(5): 1570. [Google Scholar]
- Han S B, Huang M F, Li T F, et al. Deep learning-based intrusion detection and impulsive event classification for distributed acoustic sensing across telecom networks[J]. Journal of Lightwave Technology, 2024, 42(12): 4167-4176. [Google Scholar]
- Dong L L, Zhao W A, Huang S, et al. Distributed fiber optic acoustic sensing system intrusion full event recognition based on 1-D MFEWnet[J]. Physica Scripta, 2024, 99(4): 045506. [Google Scholar]
- Ma Z, Li W Z, Zhang J Z, et al. Research on feature selection algorithm for DVS vibration signal recognition rate improvement[J]. Infrared and Laser Engineering, 2024, 53(8): 238-248 (Ch). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.
