Open Access
Issue |
Wuhan Univ. J. Nat. Sci.
Volume 30, Number 3, June 2025
|
|
---|---|---|
Page(s) | 263 - 268 | |
DOI | https://doi.org/10.1051/wujns/2025303263 | |
Published online | 16 July 2025 |
- Lott J. Eigenvalue bounds for the Dirac operator[J]. Pacific Journal of Mathematics, 1986, 125(1): 117-126. [Google Scholar]
- Levitan B M, Sargsjan I S. Sturm-Liouville and Dirac Operators[M]. Dordrecht: Kluwer Academic Publishers Group, 1991. [Google Scholar]
- Lunyov A A, Malamud M M. Stability of spectral characteristics of boundary value problems for 2×2 Dirac type systems. Applications to the damped string[J]. Journal of Differential Equations, 2022, 313: 633-742. [Google Scholar]
- Kh Amirov R, Keskin B, Ozkan A S. Direct and inverse problems for the Dirac operator with a spectral parameter linearly contained in a boundary condition[J]. Ukrainian Mathematical Journal, 2009, 61(9): 1365-1379. [Google Scholar]
- Du G F, Gao C H, Wang J J. Spectral analysis of discontinuous Sturm-Liouville operators with Herglotzs transmission[J]. Electronic Research Archive, 2023, 31(4): 2108-2119. [Google Scholar]
- Zhang M Z, Li K, Ju P J. Discontinuity of the nth eigenvalue for a vibrating beam equation[J]. Applied Mathematics Letters, 2024, 156: 109146. [Google Scholar]
- Lv X X, Ao J J, Zettl A. Dependence of eigenvalues of fourth-order differential equations with discontinuous boundary conditions on the problem[J]. Journal of Mathematical Analysis and Applications, 2017, 456(1): 671-685. [Google Scholar]
- Ao J J, Zhang L. An inverse spectral problem of Sturm-Liouville problems with transmission conditions[J]. Mediterranean Journal of Mathematics, 2020, 17(5):1-24. [Google Scholar]
- Zhang M Z, Li K. Dependence of eigenvalues of Sturm-Liouville problems with eigenparameter dependent boundary conditions[J]. Applied Mathematics and Computation, 2020, 378: 125214. [Google Scholar]
- Li K, Zhang M Z, Zheng Z W. Dependence of eigenvalues of Dirac system on the parameters[J]. Studies in Applied Mathematics, 2023, 150(4): 1201-1216. [Google Scholar]
- Kerimov N B. A boundary value problem for the Dirac system with a spectral parameter in the boundary conditions[J]. Differential Equations, 2002, 38(2): 164-174. [Google Scholar]
- Allahverdiev B P. A nonself-adjoint 1D singular Hamiltonian system with an eigenparameter in the boundary condition[J]. Potential Analysis, 2013, 38(4): 1031-1045. [Google Scholar]
- Allahverdiev B P. Extensions, dilations and functional models of Dirac operators[J]. Integral Equations and Operator Theory, 2005, 51(4): 459-475. [Google Scholar]
- Binding P A, Browne P J, Watson B A. Equivalence of inverse Sturm-Liouville problems with boundary conditions rationally dependent on the eigenparameter[J]. Journal of Mathematical Analysis and Applications, 2004, 291(1): 246-261. [Google Scholar]
- Zhang L, Ao J J, Lü W Y. Inverse Sturm-Liouville problems with a class of non-self-adjoint boundary conditions containing the spectral parameter[J]. Wuhan University Journal of Natural Sciences, 2024, 29(6): 508-516. [Google Scholar]
- Naimark M A. Linear Differential Operator[M]. New York: Frederick Ungar Publishing Company, 1968. [Google Scholar]
- Zettl A. Sturm-Liouville Theory[M]. Providence RI: American Mathematical Society, 2005. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.