Open Access
Issue
Wuhan Univ. J. Nat. Sci.
Volume 30, Number 3, June 2025
Page(s) 289 - 301
DOI https://doi.org/10.1051/wujns/2025303289
Published online 16 July 2025
  1. Ahlswede R, Cai N, Li S R, et al. Network information flow[J]. IEEE Transactions on Information Theory, 2000, 46(4): 1204-1216. [Google Scholar]
  2. Koetter R, Kschischang F R. Coding for errors and erasures in random network coding[J]. IEEE Transactions on Information Theory, 2008, 54(8): 3579-3591. [Google Scholar]
  3. Gluesing-Luerssen H, Lehmann H. Distance distributions of cyclic orbit codes[J]. Designs, Codes and Cryptography, 2021, 89(3): 447-470. [Google Scholar]
  4. Gluesing-Luerssen H, Morrison K, Troha C. Cyclic orbit codes and stabilizer subfields[J]. Advances in Mathematics of Communications, 2015, 9(2): 177-197. [Google Scholar]
  5. Gluesing-Luerssen H, Troha C. Construction of subspace codes through linkage[J]. Advances in Mathematics of Communications, 2016, 10(3): 525-540. [Google Scholar]
  6. Chen B C, Liu H W. Constructions of cyclic constant dimension codes[J]. Designs, Codes and Cryptography, 2018, 86(6): 1267-1279. [Google Scholar]
  7. Heinlein D, Kurz S. Coset construction for subspace codes[J]. IEEE Transactions on Information Theory, 2017, 63(12): 7651-7660. [Google Scholar]
  8. Honold T, Kiermaier M, Kurz S. Optimal binary subspace codes of length 6, constant dimension 3 and minimum distance 4[EB/OL]. [2024-09-10]. https://arxiv.org/abs/1311.0464v2. [Google Scholar]
  9. Trautmann A L, Manganiello F, Braun M, et al. Cyclic orbit codes[J]. IEEE Transactions on Information Theory, 2013, 59(11): 7386-7404. [Google Scholar]
  10. Ben-Sasson E, Etzion T, Gabizon A, et al. Subspace polynomials and cyclic subspace codes[J]. IEEE Transactions on Information Theory, 2016, 62(3): 1157-1165. [Google Scholar]
  11. Roth R M, Raviv N, Tamo I. Construction of Sidon spaces with applications to coding[J]. IEEE Transactions on Information Theory, 2018, 64(6): 4412-4422. [Google Scholar]
  12. Zhang H, Cao X W. Further constructions of cyclic subspace codes[J]. Cryptography and Communications, 2021, 13(2): 245-262. [Google Scholar]
  13. Dinh H Q, Lopez-Permouth S R. Cyclic and negacyclic codes over finite chain rings[J]. IEEE Transactions on Information Theory, 2004, 50(8): 1728-1744. [Google Scholar]
  14. Liu X S, Liu H L. LCD codes over finite chain rings[J]. Finite Fields and Their Applications, 2015, 34: 1-19. [Google Scholar]
  15. Hu P, Liu X S. Constacyclic codes of length ps over finite rings FPm+uFPm+vFPm+uvFPm[J]. Wuhan University Journal of Natural Sciences, 2020, 25(4): 311-322. [Google Scholar]
  16. Liu X S, Liu H L. σ-LCD codes over finite chain rings[J]. Designs, Codes and Cryptography, 2020, 88(4): 727-746. [Google Scholar]
  17. Liu X S, Liu H L. Quantum codes from linear codes over finite chain rings[J]. Quantum Information Processing, 2017, 16(10): 240. [Google Scholar]
  18. Liu Z H, Wang J L. Linear complementary dual codes over rings[J]. Designs, Codes and Cryptography, 2019, 87(12): 3077-3086. [Google Scholar]
  19. Norton G H, Sălăgean A. On the structure of linear and cyclic codes over a finite chain ring[J]. Applicable Algebra in Engineering, Communication and Computing, 2000, 10(6): 489-506. [Google Scholar]
  20. Abualrub T, Aydin N, Aydogdu I. Optimal binary codes derived from F2F4-additivecyclic codes[J]. Journal of Applied Mathematics and Computing, 2020, 64(1): 71-87. [Google Scholar]
  21. Bonnecaze A, Udaya P. Cyclic codes and self-dual codes over F2+uF2[J]. IEEE Transactions on Information Theory, 1999, 45(4): 1250-1255. [Google Scholar]
  22. Norton G H, Salagean A. On the Hamming distance of linear codes over a finite chain ring[J]. IEEE Transactions on Information Theory, 2000, 46(3): 1060-1067. [Google Scholar]
  23. Dinh H Q, Bag T, Upadhyay A K, et al. Quantum codes from a class of constacyclic codes over finite commutative rings[J]. Journal of Algebra and Its Applications, 2020, 19(12): 2150003. [Google Scholar]
  24. Kal X S, Zhu S X. Quaternary construction of quantum codes from cyclic codes over F4+uF4[J]. International Journal of Quantum Information, 2011, 9(2): 689-700. [Google Scholar]
  25. Liu H L, Liu X S. New EAQEC codes from cyclic codes over Fq+uFq[J]. Quantum Information Processing, 2020, 19(3): 85. [Google Scholar]
  26. Ma F, Gao J, Fu F W. Constacyclic codes over the ring FP+vFq and their applications of constructing new non-binary quantum codes[J]. Quantum Information Processing, 2018, 5(2):130-141. [Google Scholar]
  27. Tang Y S, Zhu S X, Kai X S, et al. New quantum codes from dual-containing cyclic codes over finite rings[J]. Quantum Information Processing, 2016, 15(11): 4489-4500. [Google Scholar]
  28. Dougherty S T, Liu H W. Independence of vectors in codes over rings[J]. Designs, Codes and Cryptography, 2009, 51(1): 55-68. [Google Scholar]
  29. MacWilliams F J, Sloane N J A. The Theory of Error-correcting Codes[M]. Amsterdam: Elsevier, 1977. [Google Scholar]
  30. Wood J A. Duality for modules over finite rings and applications to coding theory[J]. American Journal of Mathematics, 1999, 121(3): 555-575. [Google Scholar]
  31. Liu Z H. Galois LCD codes over rings[J]. Advances in Mathematics of Communications, 2024, 18(1): 91-104. [Google Scholar]
  32. Fan Y, Ling S, Liu H W. Matrix product codes over finite commutative Frobenius rings[J]. Designs, Codes and Cryptography, 2014, 71(2): 201-227. [Google Scholar]
  33. Bosma W, Cannon J, Playoust C. The magma algebra system I: The user language[J]. Journal of Symbolic Computation, 1997, 24(3/4): 235-265. [Google Scholar]
  34. Otal K, Özbudak F. Cyclic subspace codes via subspace polynomials[J]. Designs, Codes and Cryptography, 2017, 85(2): 191-204. [Google Scholar]
  35. Zhao W, Tang X L. A characterization of cyclic subspace codes via subspace polynomials[J]. Finite Fields and Their Applications, 2019, 57: 1-12. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.